TABLE OF CONTENTS

PAGE

FN S I o T 1
INTRODUGCTION ...ooiiiiieiceie et ee sttt e sttt e st sssr e s ssresssssessassessasesssssesssssesssssessssessarenesns 1
ACKNOWLEDGMENTS ...ttt ettt s et e st e sre e s saeesseesssnseeseneeesrenas 3
OBTAINING AND INSTALLING THE PROGRAM ...ooviitieeeee e 4
DISTRIBUTIONcttie ittt et e e st e e s eesssvsessesaessesessssnessssesssresssssessaseeesarens 4
FILES COMPRISING THE GRID GENERATOR PROGRAMcococvvveviernenn, 6
PROGRAM FLOW ILLUSTRATED BY A CALL TREE......c..cccoceiveeeeeeeeeenen, 17

12N O RN 25
THE FIRST TWO LINES. ... ceee ettt ettt e s seee s sve s s sree s snresssnaeesaneneeas 25
FILE10 -- CONTROL SCALARS FOR NEW START ..o 26
The "rUN-COMMENT" TINESccceeeee et s s e e s s e e e s nees 27

The "NUMBEr-0f-DIOCKS" TINE......cciiceeiee ettt 27

ThE "ITEratiONS" [INES.....ceveieeeecteeee ettt e s e e e s ea e e s s e b e e e e s s erbeeassennees 28

The "flENAME-11" 1INE....oeeiiiecieie ettt e s e e e erbe e e s e e nees 32

The "fIllENAME-14" 1INE....oeeei ittt e s e e s e nees 32

The "WHTe-fOr-reStart” 1INE........cociieeeiei ettt a e e 34

The " OMEgPOr" [INE....e et es 35

The "quality-CheCK™ TINEccce e 35

The "blocK-ComMMENT" [INE.......veieieeeeee e e e 36

The "dIMENSION" TINE.....eeeieeeeeeie ettt e s e e s s e e s s erbe e e s e snees 37

The "hanNdednNESS" [INE.......ooi it a e e aees 37

The "POlar-axiS" lINEoieeceececee et es 39

The "freezeblOCK™ TINE.......oii it a e s 40

LTSI £ o L= 40

ThE "NOMMY/SECE" 1N .ottt e e e e s s e e s s erb e e e e s eanees 44
Thefirst type of "edges” lINEccov e 44

The second type of "edgeS” [IN........ccvieeiiece i 45

The "read-iN-FIXEA" [INEeei i a e e aees 47

The "plane-normal-t0" [INES..........ccoveieieeiiee e 48

The "cylinder-about” 1INESc.cceeieee e 50

The "ellipSOid" 1INEeceeceee et 52

The "collapsed-to-an-axiS' lINEScceiieierieere e 55

The "collapsed-to-a-PoiNt” [INEScceceeieeeseereee e 56

The "MatCh-TO-TACE" TINES ...t e s e s s aees 57

The "freeze-at-reSEA" [INE.....c.veee et e e e e e nees 59
FILE11 —BODY DEFINITION ARRAYS ...t eeee s s 60
FILE12 — CELL HEIGHTS AND ANGLES AT BOUNDARY SURFACES..... 61
FILE1I3—TO READ IN A GRID AND SMOOTH IT ..ooiiceeeeeeeeee e 63
FILE16 — CONTROL SCALARSFOR RE-START ...ttt 63
FILE18 —INDICES OF SURFACES TOBE VIEWEDoooeeeeieeeeeee e 65
FILE19 — CONTROL SCALARSFOR SMOOTHING A GRID.ccccveeevveernee. 67

RUNNING THE GRAPHICAL USER INTERFACE ... 70
EXAMPLE CASES ... 72
THE BASIC BOX CASE ... 73
THEWING WITH FLAT PLATE EXTENSION CASE ... 80
THE HEMISPHERE-CYLINDER-CONE CASE ... 86
FIRST VARIATION ON THE BASIC BOX CASE -- THOMAS &
MIDDLECOFF CLUSTERING TERMS.........cccoiiiiii 94
SECOND VARIATION ON THE BASIC BOX CASE -- LOCALLY
OPTIMUM RELAXATION PARAMETER (Q) .coviieeirieeeenieneeeesieeeenieees 97
INPUT FILTERS.ot s 100
PREGRAPE/AL PROGRAMoooiiiiiiiiteiet et 100
FIOFILTER PROGRAM ..ottt 106
THEORETICAL DEVELOPMENT ..o 107
POISSON EQUATIONS IN PHYSICAL SPACE ..., 107
IMPROVED STEGER & SORENSON RHSTERMS ..o 110
THOMAS & MIDDLECOFF CLUSTERING TERMS.........cccoiie 115
OPTIMUM RELAXATION PARAMETER.......cccoiiiiiie 116
POSTSCRIPT FILES ... 118

Table
Table
Table
Table
Table
Table
Table
Table
Table

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.

© o N g k~wbdPE

LIST OF TABLES

PAGE
Directories Resulting from Unpacking the tar Tape..........ccccceevevieennne. 4
Source File Naming ConVentionccccevveeeeiieeneeseseeseeseeseeseeneens 5
3DGRAPE/AL Program Files (Files 1 - 159)......ccccccevvreneienereneneneenes 16
LiSt Of ParameerS......ccooeiirierierieseeee et 23
Logical Unit Numbers Used inthisProgramcccccceevveeeieeniennnne 24
The First Two Lines of INput Data..........ccccceveereeieseeneese e esee e 25
Face Numbers and INAICES..........cooeriiiiiiri e 43
List of Input LinesUsed in FIle16 INPULccceveeeerieneecn e 65
(000] [0 gl 600 (= NS SOPTPPR R 67
GUI CONLrol BULLONS........coueiiiiieieiesiesie sttt 71
Screen Buttonsin CONV HIST Modeccocoviverieieienenesesesesees 72
Data Files for Example Cases (Files 160 - 178)ccceeveevveceeseereennnne 73
PREGRAPE/AL Program and Data Files (Files 179 - 206) 101
Description of PREGRAPE/AL input fil€......cccooevveceiieece e, 104
OPPOSING FACE PAITS ..ottt ene 105
F1OFILTER Program and Data Files (Files 207 - 208)c.cccccevruenee. 107
PostScript Files Comprising This Manual (Files 209 - 230) 119

ABSTRACT

This document is a users manual for a new three-dimensional structured multiple-block
volume grid generator called 3BDGRAPE/AL.L It isasignificantly improved version of
the previously-released and widely-distributed program 3DGRAPE.2:3 Many of those
improvements are taken from the grid generator program 3DMAGGS.# It generates
volume grids by iteratively solving the Poisson Equations in three-dimensions. The right-
hand-side terms are designed so that user-specified grid cell heights and user-specified
grid cell skewness near boundary surfaces result automatically, with little user interven-
tion. Versatility was a high priority in this code's devel opment, and as aresult it can gen-
erate grids in amost any three-dimensional physical domain.

The code is written in Fortran-77. 1t can be installed as an ordinary batch program, and in
that form it should run on ailmost any computer. Alternatively, on a Silicon Graphics Inc.
(SGI) IRIS workstation it can be installed along with its ssimple graphical user interface
(GUI). The GUI isalso written in Fortran-77, and calls functions in the IRIS Graphics
Library (IGL). With the GUI the user can watch selected grid surfaces converging to
their final form asthe elliptic solver iterates. For compiling on a CRAY supercomputer
there is a vectorized batch version.

An introduction describing the improvements over the antecedent 3DGRAPE codeis pre-
sented first. Then follows a chapter on the basic grid generator program itself, and
commentson installing it. Theinput isthen described in detail. After that isa
description of the Graphical User Interface. Five example cases are shown next, with
plots of the results. Following that is a chapter on two input filters: one which can
change input for the antecedent SDGRA PE program into input for this program, and the
other which can prepare input data for this program from the output of GRIDGEN. Last
isatreatment of the theory embodied in the code.

INTRODUCTION

The original program, 3DGRAPE, of which 3DGRAPE/AL is an updated version, isa
batch-type program. Thismeansthat it readsin pre-defined input data, generates the
grid, and writesit out. For those boundary surfaces which are of interest ("the body") it
expectsto read X,Y,Z coordinates of surface grid points which the user has pre-defined
using other software. Other boundary surfaces of lessinterest ("the outer boundary") can
be found by the program itself using simple analytic shapes. The grid can consist of
multiple blocks, and the program is capable of finding its own internal block-to-block

Isorenson, R. L. and Alter, S. J., "3DGRAPE/AL: The Ames-Langley Technology Upgrade,” appearing in
"Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD)
Solutions,” NASA CP 3291, May 1995, pp. 447-462.

23orenson, R. L., "The 3DGRAPE Book: Theory, Users Manual, Examples,” NASA TM 102224, July
1989.

3Sorenson, R. L., "Three-Dimensional Zonal Grids About Arbitrary Shapes by Poisson's Equation,”
appearing in Sengupta, S., Hauser, J., Eiseman, P.R., and Taylor, C., eds., Numerical Grid Generation in
Computational Fluid Mechanics, Pineridge Press Ltd., 1988.

4Alter, S. J., Weilmuenster, K. J., "The Three-Dimensional Multi-Block Advanced Grid Generation
System (3BDMAGGS)," NASA TM 108985, May 1993.

boundary surfaces. Volume grid points are found by numerically solving the Poisson
eguations. The Steger & Sorenson (S& S) right-hand-side (RHS) terms (or "forcing
functions') in those equations are of a type which allows the user to choose the desired
cell height on aread-in boundary, after which the program automatically finds the actual
numerical values for the RHS terms which yield the desired cell heights. In the process
the RHS terms attempt to give local near-orthogonality in the region of those same read-
in surfaces. The cell heights the user requires may be of any magnitude (limited only by
the precision of the computer), appropriate for both viscous and inviscid aerodynamic
flow modeling. Theinput datais ordinary text, with required formatting. The output grid
may be any of three formats, including the commonly used PLOT3DS formats.

The new program is called 3BDGRAPE/AL. "GRAPE," as used herein, is an acronym
standing for "Three-Dimensional GRids about Anything by Poisson's Equation.” The
"AL" signifies that the extension and improvement was performed by the two authors of
this manual, one at NASA Ames Research Center and one at NASA Langley Research
Center. All the features described above for the original program are preserved, and a
significant suite of new featuresis added. Those new features are summarized below:

» Grid quality is enhanced by re-formulated control terms in the Poisson Equations.
The user may specify arbitrary angles with which lines are to intersect boundaries,
rather than that specification being limited to 90° everywhere. The treatment of
sharp corners which transverse boundary surfaces (e.g., agrid wrapping around an
airplane fuselage which has a strake) isimproved using this capability.

« Another improvement to grid quality is the addition of Thomas & Middlecoff6
(T&M) clustering terms for cases where all six faces of ablock areread-in. The
user can choose either the Steger & Sorenson terms (as in the original code and
improved as described above), the Thomas & Middlecoff type terms, or a blend-
ing between the two which gives good cell-size and skewness control at both the
boundaries and the interior.

* Grid quality is evaluated by computing and printing maxima, minima, medians,
and averages of cell heights and non-orthogonality, at boundaries and in the inte-
riors of the blocks of the finished grid.

« Initialization isimproved by Trans-Finite Interpolation’ (for cases with six fixed
boundary surfaces). In some cases gridsinitialized thusly can serve asthefinal
grid, in others this improved initialization speeds convergence.

+ Erlich's Ad Hoc Method8 for computing locally optimum relaxation parametersis
available for the code's SOR solver. Thisalso can speed convergence.

* Wheninstalled on CRAY computers the code is vectorized in all three coordinate
directions, allowing the longest possible vector length in each block. This, also,
Speeds convergence.

Swalatka, P. P., Buning, P. G., and Elson, P. A., "PLOT3D User's Manual," NASA TM 101067, July
1992,

6Thomas, P. D., Middlecoff, J, F., "Direct Control of the Grid Point Distribution in Meshes Generated by
Elliptic Equations,” AIAA Journal, vol 18, pp. 652-656, June 1979.

"Soni, B.K.,"Two- and Three-Dimensional Grid Generation for Internal Flow Applications of
Computational Fluid Ddynamics," AIAA 85-1526, 1985.

8Erlich, L. W., "An Ad Hoc SOR Method, " Journal of Computational Physics, val. 44, pp. 31-45, March
1981.

* Thegrid generation iteration schedule can be divided into parts. Parameters
which effect convergence (such as relaxation rates), as well as the type of
clustering terms used and their associated decay rates, are adjustable with each
part. Intermediate solutions and restart files can be written after each part. Thus,
in practical operation, as much can sometimes be accomplished in one run with
this program as in multiple runs with other grid generators.

* Aninput filter called PREGRAPE/AL is supplied as a companion program. It

inputs the output from the GRIDGENS code, which contains blocking strategy
and surface grids, and turns that into input for 3DGRAPE/AL.

* Another input filter, called F10FILTER which reads input designed for the earlier
3DGRAPE program, and re-formatsiit for use in the new 3DGRAPE/AL program.

* Required cell heights and skewness at read-in surfaces can be specified by the
user at each point from afile.

» A complete grid generated elsewhere can be read-in, and the elliptic solver can be
run afew steps to smooth the grid.

* The program has much more extensive error-checking, of both input data and the
process following.

» A simple Graphical User Interface, coded in Fortran-77 and calling the IRIS
Graphics Library, alows the user to watch selected grid surfaces while the grid
solver isiterating. The user can also pause anytime during the iterative process
and plot convergence histories. A full suite of transforms and other featuresis
included.

ACKNOWLEDGMENTS

The authors are grateful to Professor Joe Thompson for his pioneering work in elliptic
grid generation, and for his gracious and encouraging example. Dr. Jeffrey Hultquist,
formerly of NASA Ames Research Center, provided invaluable help with the graphics;
were it not for his patience, generosity, and expertise the GUI would not have been
possible. Dr. Jin Chou of Computer Science Corp. contributed expert assistance with
vector analysis. Dr. Jamshid S. Abolhassani of Computer Sciences Corporation
provided various valuable insights and explanations. Mr. William Kleb of NASA
Langley Research Center assisted in the formulation of LARCS and other interpolation
issues. The second author gratefully acknowledges support from contract NA S1-19000.

Thiswork is dedicated to the memory of Joseph L. Steger: scientist, mentor, teacher,
and friend.

9steinbrenner, J. P., Chawner, J. R., and Fouts, C. L., The GRIDGEN 3D Multiple Block Grid Generation
System," Wright Research and Development Center Report WRDC TR90-33022, October 1989.

OBTAINING AND INSTALLING THE PROGRAM

DISTRIBUTION

It isintended that the code will be available from NASA's clearinghouse for computer
programs, the Computer Software Management and Information Center (COSMIC),
located at:

COsMIC

University of Georgia

382 East Broad Street

Athens, GA 30602

Phone: (404) 542-3265

Internet: service@cosmic.uga.edu

It is expected that the code will be distributed on a UNIX tar tape. How COSMIC will
chose to structure the files on that tape -- their order and the directory structure into which
they are put -- is unknown as of thiswriting. However, asthe tar tape was distributed by
the authors, unpacking it caused the creation of seven directories:

Directory: Contents:

3dgdrape | Program files, makefiles, and header files making up the 3DGRAPE/AL
grid generator code

box Input and output datafiles for the three sample data cases using the
"wavy-sided box" boundary shape
wing Input and output data files for the "wing-and-flat-plate” sample data case
hcc Input and output data files for the "hemisphere-cylinder-cone" sample
data case
pre Program files, makefiles, header files, and sample datafiles for the

PREGRAPE/AL input filter

f10filter Program file and sample datafile for the FLOFILTER input filter

ps Compressed PostScript files containing the text and figures which are
this manual

Table 1. Directories Resulting from Unpacking thetar Tape

Two hundred and thirty files are distributed among the directories. Every main program,
subroutine, function, makefile, datafile, etc., isin itsown file. Those 230 files are
described in several tables appearing through out this manual. Files 1 through 159 are
files associated with the BSDGRAPE/AL grid generator code, including the GUI and
makefiles. Files 160 through 178 are files which make up the five example cases which
are used to exercise the grid generator code. Files 179 through 206 constitute the input
filter PREGRAPE/AL, including a makefile and atest case. Files number 207 and 208
are source code and atest case for the input filter FLOFILTER. Files 209 through 230 are
compressed PostScript files which comprise this manual .

Because the program was developed on a computer having a UNIX operating system the
developer has made use of the C-Pre-Processor utility, which offers functionality similar
to that of the Update utility on earlier CDC and CRAY computers. This means, simply,
that a utility has been employed wherein parameter statements and common blocks are
stored once, in separate files called "header files," and then automatically inserted into the
code, wherever needed, by #include statements. Thus, when adimension size or a
common block must be changed, that change is made in only one place. This reduces
both effort and errors. Users employing the code on other operating systems not having
this utility should simply insert copies of the header files wherever they are required.

Another artifice, also deriving from the UNIX operating system on which this code was
developed, isthe makefiles. They constitute explicit instructions of how the code isto be
compiled and linked. There are six makefiles supplied with the code, for compiling and
linking it in UNIX operating systems running on

» single-processor SGI workstations,

* multiple-processor SGI workstations,
* CRAY supercomputers,

* SUN workstations,

* IBM workstations, and

» H-Pworkstations.

On SGI workstations the program can be compiled and linked either with or without the
graphics package; on the other four types of machine the supplied makefiles will compile
and link it as a batch program only, without any graphics. Asof thiswriting it is said that
the IGL has been licensed to IBM, and so the program with its graphics package might
run on IBM machines aswell as SGIs, but this has not been tested. Inits batch version
the code should run on anything with a Fortran-77 compiler.

To assist the user in differentiating between the various parts and options of this software
package a naming convention has been used for the sourcefiles:

Sour ce files having Contain:
names ending in:
Just plain ".f" The basic batch version of SDGRAPE/AL. They are used on all
the computers listed above. Program "main.f" is an example.

A Versions of the solve subroutines which vectorize on the CRAY .
File"solve v.f" isan example.

" m.f" Versions of the solve subroutines which are optimized for use on
multiple-processor SGI workstations. File "solve m.f" isan
example.

" g.f" The graphics package. They are used only on SGI workstations.
File"plotit_g.f" isan example.

" pf" PREGRAPE/AL. Main program "pregrapeal_p.f" is an example.

Table2. Source File Naming Convention

FILESCOMPRISING THE GRID GENERATOR PROGRAM

The table below gives alist of the files containing the SDGRAPE/AL code and other files
necessary to compile and link it. It gives afile number, the file name, comments on that
program unit, and a notation of how this program unit is different from its antecedent in
the earlier version of 3SDGRAPE. All thefileslisted below will be found in the
subdirectory "3dgrape”.

File File name: Purpose of, and assorted How
number: observations on, thefile: changed:

1 main.f The main program. The sameinall Much
versions. simplified

2 axbd.f Applies the collapsed-to-axis boundary
treatment by calling subroutine axsub. Does
the indexing.

3 axinit.f Initializes the X,Y,Z for points on an axis.

4 axsub.f Actually extrapolates aline to an axis.

5 banner.f Writes the 3BDGRAPE/AL "banner" onto the | New
"printout” file. subroutine,

code taken
from
subroutine
input

6 boundary.f | Appliesthe boundary conditionsin each New
iteration. New boundary treatment -- freeze- | boundary
at-restart. The user might want the floating | treatment
boundaries to stop floating at restart. added

7 buglist.f Collect brief notes concerning bugs found New
and fixed. Set bugfix level number for subroutine
printout.

8 checkco.f Consider whether the boundary treatments | New
specified for each face cause the corner subroutine
pointsto be treated not at all, once, or more
than once.

9 checked.f Consider whether the boundary treatments | New
specified for each face cause the edgesto be | subroutine
treated not at all, once, or more than once.

10 checkhow.f | Go through each edge, recording how each | New
point on each edge is treated. subroutine

11 checks.f Check each edge point and each corner point | New
to see if the boundary treatments specified | subroutine
for each face cause those points to be treated
not at all, once, or more than once. This
subroutine calls checkco, checked,
checkhow.

12 chkmat.f Checks the match-to-face input data for More robust

consistency.

13

coarse.f

Subroutine coarse cycles through the coarse
partsin the iteration schedule, and then
Interpolates from coarseto fine. Batch
version.

New
subroutine,
code taken
from main
program.

14

cylbd.f

Does the indexing and calls cylsub to apply
the cylinder-about boundary treatment. As
with axbd and axsub, this does the indexing
while cylsub actually does the work.

15

cylinit.f

Initializes the X,Y,Z for points on acylinder.

16

cylsub.f

Actually projects aline onto acylinder.

17

docoarse.f

A littlelogical function which tells us
whether or not there are any coarse partsin
the iteration schedule, and if the requisite
conditions are satisfied.

New
subroutine

18

edge.f

Given afunction of one independent
variable, discontinuous and double valued
(e.g., thetangent at pi/2), this function finds
aworking value of the function at the point
of discontinuity by extrapolating to that
point from both sides, and averaging those
two values. It ispart of the generalized
angle treatment.

New
subroutine

19

elipbd.f

Does the indexing and calls elipsub to apply
the ellipsoid boundary treatment. Aswith
axbd and axsub, this does the indexing while
elipsub actually does the work.

20

eipinit.f

Initializes the X,Y,Z for points on a cylinder.
Completely re-written to initialize those
points as at the intersections of lines of
latitude and longitude on aglobe. Allows
polar axis to be any of the 3 coordinate axes,
and either index to go in either direction.
Removes the awkward restriction about
being only an even-numbered face, with
read-in-fixed face opposite it.

Much
improved

21

elipsub.f

Actually project aline onto the ellipsoid.
Completely re-written to have the capability
to truly project along alocal normal to the
ellipsoid, whereas before we could only
project from the origin to the ellipsoid. This
solves a problem, seen in the earlier code,
wherein these boundary points were "stiff,"
i.e., they refused to move much with
iteration.

Much
improved.

22 finef Subroutine fine cycles through the fine parts | New
in the iteration schedule. Aswith subroutine | subroutine,
coarse, above, it comesin abatch and a code taken
graphical version. Thisisthe bvatch from main
version. program.

23 fixinit.f Reads the X,Y ,Z for read-in-fixed boundary | New format
treatments. Now has the ability to use 12- available.
column fields or 20- column fieldsin filell,
at the user's choice.

24 frezinit.f Initializes things for the new frozen-at- New
restart boundary treatment. subroutine

25 getang.f Part of the grid quality package. A function | New
to find the angle between two vectors. subroutine

26 getdsi12.f Record appropriate values for the cell height | New

27 getdsi3a.f | and cell skewness. subroutines,

. code taken

28 getdsiSe.f from poif...

subroutines.

29 getedges.f Reads input data for sharp corners cutting New
across faces. subroutine,

replaces
subroutine
light

30 getmedan.f | Given an un-sorted list of numbers, find the | New
median entry. Part of the grid quality subroutine
package.

31 getsmoo.f Reads input from files 13 and 19 for the case | New
wherein agrid isread in and smoothed. subroutine

32 getstdev.f Given alist of numbers calculate their New
standard deviation. Part of the grid quality | subroutine
package.

33 initld.f Applies Vinokur's two-ended stretching New
algorithm to do stretched 1-D initialization | subroutine,
between opposing faces of the users choice. | replaces

subroutine
newinit

34 initcoms.f Initializes all the common variables, mostly | New
to zero. subroutine

35 input10.f Reads input from filel10, and calls other Formerly
subroutines which do the same. Initializes | called
some variables. subroutine

input.

36 input16.f Reads input from filel6, in the case of a New
restart, and calls other subroutines which do | subroutine,
the same. Initializes some variables. code taken

from
subroutine
restart

37 input19.f Reads input from filel9, and calls other New
subroutines which do the same. Thisisthe | subroutine
case of reading in an already-generated grid
and smoothing it alittle. Initializes some
variables.

38 interp.f Calls subroutinesinterpl, interp2, and
interp3 to interpolate X,Y,Z and P,Q,R from
coarseto fine.

39 interpl.f Interpolate X,Y,Z and P,Q,R from coarse to

40 interp2.f fine.

41 interp3.f

42 jigglef Use arandom number generator to move the
interior points around just alittle, to prevent
blow-up on the first iteration for certain
kinds of initial conditions.

43 larcs.f Smoothes a surface. New to this

code

44 lower.f Converts all incoming text to lower case, to
make it easier to test on that text.

45 makerhs.f Note how the RHS are to be calculated, and | New
calculate them. subroutine

46 matbd.f Applies the match-to-face boundary
treatment.

47 matinit.f Reads input and initializes points for the
match-to-face boundary treatment.

48 normst.f Reads in and processes cell height data for
specification of cell heights by stations.

49 outparts.f Output grid files and restart files after each | New
of the individual partsin the iteration subroutine
schedule, if appropriate.

50 output.f Does the various types of output after the New
grid is generated. subroutine,

code taken
from main
program and
modified.

51 plabd.f Applies the plane-normal-to boundary
treatment by doing the indexing and calling
subroutine plasub.

52 plainit.f Reads input and initializes points on faces | More robust
having the plane-normal-to boundary
treatment.

53 plasub.f Actualy projectsalineto aplane. More robust

54 pntinit.f Reads data and initializes aface to be

collapsed to a point.

55 poif12.f Calculates the termsin the Steger & Formerly six
56 poif34.f Sorenson (S& S-type) RHS termswhich are | subroutines,
e Invariant with respect to computational time. | now three.

57 poif56.f Improved by
adding
generalized
angle
control.

58 g2d12rel .f Compute cell height, and angles between New
lines intersecting the surface and that subroutines

o9 q2d34rel | surface, relative to what was locally

60 q2dsérel.f | gpecified. Part of the grid quality package.

61 qual2d12.f | Compute cell height, and angles between New

62 qual2d34.f | linesintersecting the surface and that surface | subroutines
in absolute terms. Part of the grid quality

63 qual2d56.f package.

64 quality.f The driver for the grid quality package. New
Calls the other subroutines, and prints out subroutine
the answers.

65 qualorth.f Computes measures of non-orthogonality at | New
each point in the interior of ablock. Part of | subroutine
the grid quality package.

66 qualsr.f Compute stretching ratios in the indicated New

67 qualsrk.f coordinate directionsin the interior of a subroutines

68 qualsrl f block. Part of the grid quality package.

69 readangs.f Read, from filel2, the angle between the line | New
intersecting the surface and each of thetwo | subroutine
surface coordinate lines.

70 readhi .f Read, from filel2, cell heights at every point | New
on aface. subroutine

71 restart.f Reads or writes data for restart. Major re-

write.

72 rhsf12.f The S& S-type RHS terms are linear Formerly six

73 rhsf34.f functions of a second derivative near the subroutines,

' surface, with the constant coefficients now three.

7 rhsf56.f calculated by the poif... routines. These
subroutines calculate that derivative at the
current time step, and then re-compute the
S& Stype RHS terms.

75 sinhinv.f Solve for x in the equations y=(sin(x))/x and | New to this

76 Sninv.f y=(sinh(x))/x, as required by Vinokur's code, but re-
stretching function. Asno analytic solution | named
is known, we must use approximations. versions of

functions of
indeterminat
eage and
unknown
authorship.

10

77 solve.f Apply the SOR iterative schemeto thegrid | Much
generation equations and get the grid. Used | modified.
on single-processor SGI workstations, and
on SUN, IBM, and H-P workstations.

78 solve v.f Apply the SOR iterative schemeto thegrid | New
generation equations and get the grid. Used | subroutine
on CRAY and multiple-processor SGI
workstations. It doesn't actually iterate the
eguations; it decides in which direction each
block should be vectorized and then calls the
subroutines immediately below.

79 solvg v.f Actually apply the SOR iterative schemeto | New

80 wolvek vi | thegrid generation equations and get the subroutines,

- grid. These subroutines are vectorized in but patterned

81 solvel_v.f | their respective coordinate directions on the | on the old
CRAY. solve

82 solvg_m.f | Actualy apply the SOR iterative schemeto | New

83 solvek m.f | thegrid generation equations and get the subroutines,

— grid. These subroutines are optimized for but patterned

84 solvel_m.f | s on multiple-processor SGI workstations. | on the old

solve

85 sphbox.f Convert the outermost 3 surfaceson all 6 Slightly
sides of any block into or out of spherical modified.
coordinates.

86 sphchk.f When going in and out of spherical
coordinates there is a problem. The phi
angle is the output from an arctan function,
which is multiple-valued. The phi can be on
different branches of the function. This
subroutine attempts to correct that, and put
them back on the same branch.

87 sphio.f Take any 3-D region, mapping into a Much
rectangular solid in the computational modified to
domain, and convert it into or out of be more
spherical coordinates. robust

88 sphpre.f In spherical coordinates the angles, in

radians, are going to be on the order of 1.
But the radii can be on any order. These
different scales can lead to numerical
problems. The solution is to scale things,
generate the grid, then unscale. This
subroutine prepares those scale factors.

89 sphsub.f Called by sphchk which does the indexing.

This actually does the work.

11

90 startup.f This getsthe code ready toiterate. It calls | New
the appropriate input subroutine, prepares subroutine.
those termsin the RHS which arefixed for | Code taken
all computational time, initializes the from main
interiors of the blocks, takes the grid into and much
and out of spherical coordinates if modified.
appropriate, and first calls the graphics if
appropriate.

91 stretch.f Implements Vinokur's stretching function to | New to this
give anormalized tabulated datafrom O to 1. | code, but re-

named
version of a
subroutine of
indeterminat
e age and
unknown
authorship.

92 tfi2d.f Performs 2-D Trans Finite Interpolation. New to this
Used in preparing the T& M-type RHS code.
terms.

93 tfi3d.f Performs 3-D Trans Finite Interpolation. New to this
Used ininitializing the interiors of the code.
blocks, in the case of al six sides of the
block read-in-fixed.

9 tm.f Calculate the T& M-type RHS terms. New to this

code

95 tweakpqr.f For the case of RHS terms being S& S-type | New
blended with T& M-type, in each iteration subroutine
we must take the p1, g1, and r1 terms and
subtract the T& M-type terms at the wall,
compute the P, Q, and R terms at each point,
update the X,Y,Z, and restore the p1, g1, and
rl by adding the T& M-type back in. This
subroutine adds and subtracts the T& M-type
terms at the wall.

96 writeit.f Writes the grid solution file, filel4.

97 xferpgr.f Initialize the S& Stype RHS terms to the New
T&M-type valuesif appropriate. subroutine

98 plotit_g.f The driver for the graphics package. The New
call to this, and some common blocks, are subroutine
the only interface between the batch part of
3DGRAPE/AL and this graphics package.

99 adjust_g.f The grid surfaces the user wants to plot New
typically contain some index values not subroutine

present in the coarse solution. So if we are
plotting a coarse solution we must modify
the requested index values to contain only
coarse points. Do so here.

12

100 axislims_g.f [Given the minimum and maximum values of | New
datarepresented by an axis, find "nice round | subroutine
numbers' for the minimum, maximum, and
ticmark intervals used in plotting the axis.

101 byebye g.f | Terminate graphical activity and exit the New
code. subroutine

102 coarse_g.f Subroutine coarse cycles through the coarse | New
partsin the iteration schedule, and then subroutine,
interpolates from coarseto fine. Graphics | code taken
version. It calls plotit. from main

program.

103 cross g.f The when plotting the grid we have the New
ability to zoom in and out. But that isdone | subroutine
on whatever is at the exact center of the
window. To put aregion of interest at the
center of the window, we need to know
where the center is. This subroutine puts a
multi-colored cross at the exact center of the
window.

104 datlin_g.f Draw the actual convergence history lineson [New
the plot. Subroutine

105 dobut23 g.f | The graphics has a screen button marked New
"exit". But exiting can be complicated, with | subroutine
confirmation and al. This subroutine
processes that button hit.

106 dobut82_g.f [Manage button hits and create thewindow | New
for convergence history plots. subroutine

107 drawinsa g.f | Draw the three control windows on theright | New

108 drawinsi_gf |Sideof the screen, intheir active and inactive| subroutine

- modes, respectively.

109 drawtris_g.f | Draw thelittle green triangles which indicate | New
the speed settings. subroutine

110 drawxax_g.f | Draw the axes on the convergence history New

111 drawyax_g.f |Plots. subroutines

112 findlegy_g.f | Findthe vertica location of the legend so New
that it covers the fewest data points. subroutine

113 fine_g.f Subroutine fine cycles through the fine parts | New
in theiteration schedule. Aswith subroutine | subroutine,
coarse, above, it comesin abatch and a code taken
graphical version. Thisisthe graphical from main
version. It calls plotit. program.

114 getlims_g.f [Get the minima and maxima of the New
convergence history datato be plotted. subroutine

115 grstart_g.f Access the grid through the common blocks, | New
and make the grid plot objects upon first subroutine

entry to the graphics package.

13

116 grstart2_g.f | Accessthe grid through the common blocks, | New
and re-make the grid plot objects upon subroutine
subsequent entry.
117 histpl_g.f Plot a convergence history. New
subroutine
118 kulur_g.f Select colors by number. New
subroutine
119 legend_g.f [Plot the legend on the convergence history
plots.
120 lenstr_g.f Find the length of a character string.
121 limitit_g.f Impose alimit on how large or small the
absolute value of a number may be.
122 makecobj_g.f | Make a plot object of the control window in | New
every possible button state. subroutine
123 maketobj g.f | Make aplot object of the transform window | New
in every possible button state. subroutine
124 maketri_g.f | Make aplot object for the little green New
triangles. subroutine
125 makewin5_g.f | Make the window for plotting the New
convergence history plots. subroutine
126 makewins_g.f [Actually make the three small windowson | New
the right. subroutine
127 makextrp_g.f | Make the exit trap plot object for the control | New
window. subroutine
128 mkhistob_g.f | Make the screen button objects for the New
history plot window. subroutine
129 mkvsobj_g.f | Make the view selection objects for the view | New
selection window. subroutine
130 mmacts g.f | Interpret the actions of the middle mouse New
button. subroutine
131 movetri_g.f | Interpret the mouse movement to determine | New
the speed settings. subroutine
132 onbut_g.f A logical function. Isthe mouseon a New
specific button? subroutine
133 pauz_g.f Wait for amouse hit on a screen button in New
the convergence history plot. subroutine
134 pline_g.f Draw aline between two given points. New
subroutine
135 plstart_g.f Get ready to plot by calling al the New
subroutines which make plot objects and subroutine
open windows.
136 prepdata_ g.f | Prepare history datafor plotting. New
subroutine

14

137 pvwds_g.f Draw words vertically. New
subroutine
138 transfm_g.f | Do the transforms -- trandlation or rotation. | New
subroutine
139 wfiloop_g.f | Loop while waiting for a mouse interrupt. New
subroutine
140 zbufit_g.f Put the program in Z-buffer mode, and re- New
draw the scene. subroutine
141 makefile.cray | A UNIX makefile to compile and link the New
code, in the vectorized version, on aCRAY. | makefile
142 makefilehp | A UNIX makefileto compile and link the New
code on an H-P workstation. makefile
143 makefileibm | A UNIX makefile to compile and link the New
code on an IBM workstation. makefile
144 makefile.sgi [A UNIX makefile to compile and link the New
code, in either batch or graphical version, on | makefile
asingle-processor SGI workstation.
145 makefile.sgim | A UNIX makefile to compile and link the New
code, in either batch or graphical version, on | makefile
amultiple-processor SGI workstation.
146 makefilesun | A UNIX makefile to compile and link the New
code on a SUN workstation. makefile
147 blend.h Header file containing a common statement | New header
containing arrays containing dataused in file
blending between the S& S-type and T& M-
type RHS terms
148 etc.h Header file containing a common statement | New header
containing various assorted scalar variables | file
and small arrays which don't logically fit
anywhere else.
149 facesl.h Header file containing a common statement | New header
containing arrays containing gammas (see file
the transformed Poission equations), partia
derivatives on the faces, coefficient termsin
the S& S-type RHS terms, etc.
150 faces2.h Header file containing a common statement | New header
containing arrays containing various data per | file
block
151 filesh Header file containing a common statement | New header
containing character variables which arethe | file
various filenames used in the code for
reading and writing
152 history.h Header file containing a common statement | New header
containing arrays containing data used in the | file

convergence history

15

153 komment.h | Header file containing a common statement | New header
containing various character variables file
(Fortran-77 frowns on having these in the
same common blocks as other types of
variables)

154 limits.h Header file containing a common statement | New header
containing arrays containing the limitsand | file
increments of the indices, for the various
blocks

155 matches.h Header file containing a common statement | New header
containing arrays holding various data per file
block

156 params.h Header file containing a parameter statement | New header
giving common array dimensions file

157 plcoms.h Header file containing common statements | New header
containing various scalar variables and file
arrays used by the plotting package

158 tmentrl.h Header file containing a common statement | New header
containing arrays containing the T& M-type | file
RHS terms

159 xyzcom.h Header file containing a common statement | New header
containing X, Y, and Z arrays file

Table3. 3DGRAPE/AL Program Files (Files1 - 159)

Readers familiar with the earlier code will note that in several cases alarge and unwieldy
subroutine has been broken up into more-manageabl e pieces, and by so doing new
subroutines have been created. But the actual code has just been moved to a new
subroutine and is in most cases essentially unchanged. Subroutine banner, containing
code taken from subroutine input, is an example. In several places -- the getdsi... sub-
routines, the poif... subroutines, therhsf... subroutines, and in the grid quality package --
the practice of having six different subroutines (one for each face, wherein 1 and 2 are
nearly identical, 3 and 4 are nearly identical, etc.) has been done away with. Instead there
are now three subroutines (one to do the job for faces 1 and 2, another for faces 3 and 4,
etc.). Thusthetotal subroutine count issmaller that it would otherwise be, and redundant
code is removed.

Every subroutine or function called by the program is either contained in the program or
to be found in the IGL, with one exception. That exception, which applies only to SGI
workstations, is that subroutines dobut82_g.f and zbufit_g.f call the UNIX function
"system™, which callsthe UNIX function "scrsave”. If difficulties regarding this arise
during linking, the user should simply comment out those calls. In doing so the ability to
make screen dumps from within the program will be lost.

16

PROGRAM FLOW ILLUSTRATED BY A CALL TREE

Following isacall tree for the program. Ideally, the entire call tree would be displayed in
one figure, but space doesn't permit. Therefore, detail call trees for certain of the
subroutines follow on subsequent pages. The reader can find out all the subroutines or
functions a subroutine calls by tracing along all the lines proceeding down and sideways
from that subroutine name.

Figure 1. Program Flow Illustrated by a Call Tree.

main
program
startu coarse fine output
(s06 ietail) docoarse (see detail) (see detail) (see detail)

Figure la. Subroutinesand Function Called by Main Program.

startup
tfi3d initcoms jiggle i np!Jth i npl|1t16
(see detail) (see detail)

che!:ks restart input19 getdlsi 12 ini 11d

checked xferpgr getdsi34 getdsi56

checkco barlmer readhi readangs
checkhow buglist lower stretch
s nhli nv sininv

Figure 1b. Detail of Subroutinesand Functions Called by Startup.

17

coarse fine
interp
i ntelrpl interp2 i nte|rp3
°“tp|ar ts (sne]glleﬁertgﬂ) SPhLOX (see clli\tle?ail) (gé)euél]g%%
writeit resltart sphio sphchk (seglgtteitgi)
lower xferpar banlner sphsub
buglist

output

writeit

quality
(see detail)

restart

Figure 1c. Detail of Subroutines Called by Coarse and Fine. Plotit Called Only by
Graphical Version.

lower

18

xferpgr

Figure 1d. Detail of Subroutines Called by Output.

banner

buglist

quality

qual2d12

qualst qualsrk qualsrl
getstdev getmedan qualorth
g2d12rel 02d34rel gzds6rel qual2d34 qual2d56

getang

Figure le. Detail of Subroutinesand Function Called by Quality.

input10 input16
banner sphpre frezinit
buglist
gete!jges normst eli pli nit fixinit pl ali nit
axinit cylinit pntinit matinit chkmat
|
IOV\ller

Figure 1f. Detail of Subroutines Called by Input10 and I nput16.

19

solve

rhsf12

rhsf34

rhsf56

tweakpar

edge

Figure 1g. Detail of Subroutines Called by Solvein Version For Single-Processor
Workstations.

solve

solve

solvek

solvel

rhsf12

rhsf34

rhsf56

tweakpar

edge

Figure 1h. Detail of Subroutines Called by Solvein Version For CRAYsand

Multiple-Processor SGI Workstations.

makerhs

poif12

poif34

poif56

edge

tm

xferpgr

larcs

tfi2d

Figure 1i. Detail of Subroutines Called by M akerhs.

20

boundary

plabd cylbd axbd elipbd matbd
plasub cylsub axsub elipsub
Figure 1j. Detail of Subroutines Called by Boundary.
plotit
grstart2 grstart wfiloop pistart
(see detail)
adjust mmacts transfm
(see detail)
kulur | |
drawinsa drawinsi N
onbut
movetri Cross
drawtris
byebye

Figure 1k. Detail of Subroutines Called by Plotit. Plotit Called Only in Graphical

Verson.

21

mmacts

Cross zbufit drawinsa
pline | drawtris
kulur onbut
dobut23
|
byelbye (S;J(tjl‘::;) dra\l\lli nsa
drawtris
dobut82
|
makewin5 prepldama pauz hi sltpl
| |
getlli ms axislims Iimlitit fi nd!egy Ieglend datalli nes
drav\|/xax dras/!/yax

Figure 1l. Detail of Subroutines Called by Mmacts. Mmacts Called Only in

Graphical Version.

22

plstart

maketobj

makecobj

makewins makextrp makextrp

restart

maketri

input19

Figure 1m. Detail of Subroutines Called by Plstart. Plstart Called Only in

Graphical Version.

The dimension sizes of the arrays, in the common blocks and elsewhere, are specified in
the header file "params.h”. They are reproduced in the table below. Thereis nothing
specia about the sizes as shipped; they can be re-adjusted to any values appropriate to the
user's application. As shipped, they will run all the supplied example cases. If they are
too big the executable will take up excess space on disk and in memory, and for that
reason it might run slower; if they are too small the program will print an error message

and quit.
Name of Value, as Use and meaning:
Parameter: codeis
shipped:
limpts 200000 | Maximum number of points, summed over all blocks
limsrf 25000 | Maximum number of controlled points, summed over all
faces
limvec 130 | Maximum dimension value of j, k and | in any block.
Must be less than limsrf.
[imblk 5 | Maximum number of blocks
limhis 3000 | Maximum number of iterations, al parts
limparts 10 | Maximum number of partsin the iteration schedule
limviews 50 | Maximum number of surfaces per view in graphical

version

Table4. List of Parameters

The program uses ten logical unit numbers for input and output, numbers 10 through 19
inclusive. They are described in the table below:

23

L ogical Char acter Where | Subroutine [Whether [What dataisin
unit variables those inwhich | they are that 1/0:
numbers: | containing | character | thoseunit | input or
the variables [numbers | output :
associated are are used:
filenames: | allocated:
10 fnaminl0 input10.f input10.f input | new start control
scalars
11 ffnaminll files.h fixinit.f input | X,Y,Z of read-in-
fixed surfaces
12 fnaminl2 filesh readhi.f input | cell heightson
controlled surfaces
readangs.f input | angleswi/r
controlled surfaces
13 fnsmooin input19.f input19.f input | read agrid
generated elsewhere
14 fnamgrid filesh writeit.f output | write out the
finished grid
15 fnamot15 filesh restart.f output | writearestart file
16 fnaminl6 restart.f restart.f input | restart control
scalars
17 fnaminl7 restart.f restart.f input | read arestart file
18 viewsfn filesh grstart_g.f input | indices of surfaces
to be viewed
19 fnaminl9 | inputl9.f input19.f input | smooth start control

scalars

Table5. Logical Unit NumbersUsed in this Program

Because Table 5, above, could aso be taken as alist of the filesread or written by the
program it might be appropriate to mention here that the graphics version of the code,
documented in a subsequent section, can write screen-dump files for making pictures.
Screen dumps of grid pictures will be named plotit.01.rgb, plotit.02.rgb., etc., and screen
dumps of convergence history plots will be named convhist.01, convhist.02, etc.

There are comments in the makefiles giving further information about compiling and

linking.

Depending on how the program was linked, it is executed by typing either "gral" or

"gra_g".

24

INPUT

THE FIRST TWO LINES

The first thing 3DGRAPE/AL does as it begins execution is to write an interactive
prompt asking what kind of agrid generation run thisis. There are three acceptable
responses. They are read, and then the user is prompted for another datum, the filename
from which subsequent dataisto beread. A carriage-return causes the program to useits
default for thisfilename. These matters are summarized in the following table:

Interactive Result: Unit from Default
response: which filename:
subsequent
dataisread:
"newstart” | A new grid is generated frominitial filel0 "filel0"
conditions
"re-start” | A partly-generated grid is further iterated filel6 "filel6"
"smooth” [A grid already generated elsewhere is read filel9 "filel9"
in and smoothed

Table6. TheFirst Two Linesof Input Data

The preceding discussion of the first two lines of input assumes that 3DGRAPE is being
run on an interactive machine. If it isbeing run on a batch machine, the prompts will be
written to the printout file, along with an echo of the input. The actual input of these two
linesin this case will come from the main job input stream. Literaly, they are read by
the logical unit denoted in the program by an asterisk, asin "read(*,100)...."

When running the program on an interactive machine one can grow weary of typing those
first two lines of data. A solution to thisisto store those two lines of input datain afile
and re-direct it into the program. For example, in running the first sample case, discussed
below, the user might put the two lines of input data:

newst art
boxal | . f 10

into afile and name it "boxin". The user would then execute the program by typing:

gral < boxin

or
gral _g < boxin

25

FILE10-- CONTROL SCALARSFOR NEW START

Input on filel0 is formatted text, and thus is readable by humans. The records are at most
70 columnswide. All datafor filel0 must be in exactly the right columns. Column
numbers will be clearly delineated below, and they must be followed exactly. Thereis
some consistency here: face numberswill always beread in 11 format, block numbersin
|2 format, indices and certain other integersin 13 format, floating-point numbersin F12
format, and file namesin A15 format. The reading of static text and character stringsis
case-insensitive, meaning that it ignores whether letters are in upper- or lower-case.
There is one exception to this: filenames, read on a UNIX system, are case-sensitive.
When a"line" of input data must be continued, the continuation line always begins with
three dots. There are three placesin the filel0 input where blank lines are allowed:
before and after "iterations" lines, before "block” lines, and before "face” lines. Blank
lines in these places can greatly enhance clarity and readability.

There are places in the input where the user is given the option of entering either a
character string or afloating-point number. The program is smart enough to sort out that
form of input. It was stated earlier that floating-point numbers areread in F12 fields. To
be precise, the format specification isF12.0. But that does not mean that only whole
numbers may be read. According to the rules of Fortran, adecimal point in an input
record overrides any placement of the decimal point implied by the format statement.
Thus the user may put a decimal point anywhere in the floating-point input fields.

The discussion of each input will be preceded by alist of al relevant data. Note that
some input lines require continuation. The first column in thislist is the line number.
The next column gives the range of column numbers for each field. Then a code will
indicate what type of datum thisis:

o "st" for static text (a character string which should be entered exactly as stated,
and which is required for readability),

o "i" for integer,

o "f" for floating-point number,
o "n"for filename

o "c" for acharacter string

In some places the user may put into afield either a character string or anumber. Those
codes are:

e "c/f" acharacter string or afloating point number
e "cli" acharacter string or an integer

The fourth column contains a brief description of what that datum is. The table will be
followed by one or more examples above a column number key. After that will follow a
discussion of the indicated input line(s).

The input SDGRAPE/AL expectsto read from filel0 begins with several lines which give
information about the entire grid and about the entire run of SDGRAPE/AL. It then goes
into an outer loop on block number, and for each passit reads information about the
block. Inside that is an intermediate |oop on face number and for each passit reads
information about the face. Inside that isan inner loop on section number within the
face, reading information about each section. At the conclusion of those nested loops, it
is finished reading from filelO.

Because the program will know the number of blocks, and knows that there are six faces
per block, and will know into how many sections the faces are divided, it will know when

26

all the required input data have been read. I.E., it will know when to stop reading.
Therefore the user can store other input data records, not currently in use, below the last
lineto be actually read. Users have found this convenient.

The" run-comment” lines

Line Column | Datum
no.: nos. type: Description:
1-20 st "run-comment "
21-70 C free-field comment describing thisrun

run- comrent
run- comrent
1234567890123456789012345678901234567890123456789012345678901234567890
1111111111222222222233333333334444444444555555555566666666667

Bl ah, bl ah, bl ah.

What this data is all

about .

The filel0 input begins with exactly two of these lines. The comments on them will
annotate the printout file, and they will help the user to remember what each filel0

dataset was used for.

The" number-of-blocks" line

Line Column | Datum o

no.: nos. type: Description:

1-17 st "number-of-blocks="
18-19 [number of blocksin thisgrid
20-28 st "-heading="
29-31 cli printout heading repetition code
32-50 st "-filename-18-views="
51-65 n name of file for input asfilel8

nunber - of - bl ocks=01

nunber - of - bl ocks=01- headi ng=kdf

nunber - of - bl ocks=01- headi ng=000

nunber - of - bl ocks=01- headi ng=054

nunber - of - bl ocks=01- headi ng=kdf -fi | ename- 18- vi ews=my_pi ct ure_dat a

12345678901234567890123456789012345678901234567890123456789012345
11111111112222222222333333333344444444445555555555666666

The printout features a convergence history for each block. Thereisaheading telling
what data are in the columns of numbers. By the default, obtained by putting blank, zero,
or kdf (meaning "keep default") in cols. 29-31, the heading is printed once per block. If

27

the user wants this heading to be printed more often, the number of lines of data between
headings should appear in thisfield.

From filel8 the program reads input describing just what points are to be drawn in each
of the views of the iterating grid as shown by the graphical version of the code. Non-
graphical versions of the code ignore thisfield. The contents of thisfile are described in
a subsequent section.

Everything on thisline after column 19 is optional.

The"iterations' lines

The "iteration lines" are actually a set of three lines, with there being two options for the
form of the second line. This set of threelinesis repeated for each "part” in the iteration
schedule (thisis explained below). Thefirst line:

Line | Column [Datum

no.: nos. type: Description:

1 1-11 st "iterations="

1 12-14 i the number of iterationsin this part

1 15-23 st "-control="

1 24-25 C overriding global switch on control, either "ye" or "no"
1 26-35 st "-rhs-type=

1 36-47 C RHS type (see below)

1 48-60 st "-coarse/fine="

1 61-66 c "coarse" or "fine "

i terations=100-control =no-rhs-type=S&S-i nitzero-coarse/fine=coarse
i terations=100-control =no-r hs-type=keep-defaul t-coarse/fine=fine
iterati ons=100-control =ye-rhs-type=S&S-init-T&MW coarse/fine=fine
iterations=100-control =ye-rhs-type=Thomas&M ddl - coar se/ fi ne=fi ne
i terations=100-control =ye-rhs-type=bl endS&S&T&M coar se/ fi ne=fi ne
iterations=100-control =ye-rhs-type=s&s-continue-coarse/fine=fine
123456789012345678901234567890123456789012345678901234567890123456
111111111122222222223333333333444444444455555555556666666

Option 1 for the second line:

Line Column | Datum
no.: nos. type: Description:

2 1-20 st "...relax-param-type="

28

2 21-25 C For this option, the character string "fixed"
2 26-44 st "-relax-param-value="
2 45-56 clf value for uniform relaxation parameter

...rel ax-paramtype=fixed-rel ax- param val ue=keep- def aul t
...relax-paramtype=fixed-rel ax- paramvalue= 1.0

12345678901234567890123456789012345678901234567890123456
11111111112222222222333333333344444444445555555

Option 2 for the second line:

Line Column | Datum o

no.: nos: type: Description:

2 1-20 st "...relax-param-type="

2 21-25 C For this option, the character string "optim”

2 26-39 st "-recomp-every="

2 40-42 cli recomputation interval

2 43-52 st "-how-much="

2 53-64 clf scale factor for optimum relaxation parameter

... rel ax-paramtype=opti mreconp-ever y=kdf - how nuch=keep- def aul t

... rel ax-paramtype=opti mreconp-ever y=010- how nuch=

0.75

1234567890123456789012345678901234567890123456789012345678901234
1111111111222222222233333333334444444444555555555566666

Thethird line:

Line Column | Datum

no.: nos. type: Description:

3 1-16 st "...abc-override="

3 17-28 c/f overriding abc value

...abc-override=no
...abc-overri de=123456789. 12
1234567890123456789012345678
1111111111222222222

This program has the ability to divide the iterations it will do in arun into parts, with all
the data shown on these lines being variable between parts. That can enable the
experienced user to accomplish as much in one execution of this code than in severad
executions of other codes. A set of these three lines should be present for each part in the

29

iteration schedule. The maximum number of parts allowed is dependent upon a parame-
ter set in params.h; that parameter is set to 10 as the code is delivered.

The "face" lines, described in a subsequent section, turn the control of cell height and
skewness on or off for each face, and specify what cell height is being requested if the
control ison. The "control" parameter on the first line of this set of "iteration” linesisa
global switch which overrides whatever is found on the "face” lines. If this switchison,
then the control is on or off according the individual "face" lines; if this switch is off then
there will be no control regardless of that the "face" lines say. With no contral, i.e., with
the RHS terms remaining at zero, the Poisson Equations become the Laplace Equations.
These giverise to agrid which is smooth, but has cell heights tending to be uniform and
has no tendency toward orthogonality.

A tip --> It is highly recommended that the user start with one part, having a few
iterations (e.g., 5) and no control. This should either be done with the graphical version,
or the grid should be iterated in batch and then examined using other graphical tools.
The boundary points and several representative interior surfaces of each block should
be observed. After zero iterations (i.e., as of the initial conditions) the grid may look
rather strange, but that strangeness should go away during the first iteration or two.
After that the user can verify that the boundary data and boundary treatments are
correct. These boundary conditions are the source of many of the input errors users
make, and it is much easier to find and correct them at this point rather than after the
complications of RHS terms and long iteration runs have been added.

The user might then want to iterate an uncontrolled solution to convergence, which
should further exonerate the boundary data and conditions. After this is seen to work,
the user should re-generate the grid, with control terms.

There are choices for which type of Right-Hand-Side terms (also known as "control
terms") isto be used in each iteration part. See columns 36-47 in the first line of this set.
They are:

» "keep-default” -- This, asit says, causes the program to use the default RHS type.
For thefirst iteration part of anew start, thisis the same as " S& S-initzero" (see
below). For a subsequent iteration part, or at the start of arestart run, it isthe
same as "S& S-continue” (see below).

e "S&S-initzero" -- Thus causes the Steger & Sorenson (S& S-type) RHS terms to
be used. They areinitialized to zero, and then updated iteratively at teach time
step. They converge to the values which give the desired cell height and skew-
ness at boundary surfaces, with control effects decaying exponentially with dis-
tance from the boundary surface.

o "S&Sinit-T&M" -- Thisisjust like "S& S-initzero" except that the terms areini-
tialized to the values computed by the Thomas & Middlecoff (T&M-type)
method. This can speed convergence by providing better initialization of the RHS
terms. But note that T& M-type requires that all six faces of the block consist of
fixed pointsin space (rather than floating around on some surface), hence this
choice for initialization of the S& S-type terms has the same limitation.

e "S&S-continue" -- This option assumes that it is a subsequent iteration part or a
restart run, and that S& S-type terms were used previously. It simply continues to
iterate on the S& S-type terms, further refining them.

30

* "Thomas&Middl" -- Use the Thomas & Middlecoff RHS terms. All six faces of
the block must consist of fixed pointsin space (rather than floating around on
some surface).

* "blendS&S&T&M" -- This option uses both S& S-type and T& M-type RHS
terms, blended as a function of the distance from the boundary surfaces. It seems
that S& S-type terms give the best results near the boundary surfaces, and that
T&M-type gives the best resultsin the interior of the blocks, and this blending
attempts to use that principle to give the best of both. Note that the limitation that
all six faces be fixed points in space applies here, as with all uses of the
T&M-type terms.

If the control terms are turned off, then this datum telling which type of control terms are
to be used isignored.

This code includes an artifice to accelerate convergence, which is called "coarse-fine grid

sequencing.” It islike one-half of a pass through amultigrid solver.10 Every third point
in each direction (which together make up the "coarse grid") is used in a course iteration
step; all points (which together make up the "fine grid") are used in afine step. To
employ this technique the user should specify coarse steps and iterate to convergence,
including the use of RHS terms as desired. The user should follow that with iteration to
convergence again, thistime using fine steps. The program will automatically interpolate
from the coarse datato make an initial fine grid after the last coarse part. Any number of
coarse steps may be followed by any number of fine steps, but coarse solution steps may
not follow fine steps.

Thelogic hereisthat the coarse solution will go fast because it does approximately one-
twenty-seventh as much arithmetic per step, and that the fine solution should go fast
because it starts with initial conditions which differ from the final solution only by errors
introduced during the interpolation between coarse and fine. The effectiveness of this
technique varies greatly from case to case, but the user can count on areduction in CPU
time of at least 50%, sometimes much more. Thereisadrawback, and it isthat if coarse-
fine grid sequencing is to be used the maximum number of pointsin each of the three
coordinate directionsin every block must be of the form 3n+1 for n some integer greater
than or equal to 4 (example: 13, 16, 19, 22, etc.). In some cases thisrequirement is
found to be burdensome, and so the use of this speedup procedure is not possible.

The Poisson equation solver in 3DGRAPE/AL uses a point-Successive-Over-Relaxation
(point-SOR) algorithm. Thisalgorithm hasin it a"relaxation parameter” which controls
the speed at which the solution processis driven. This parameter, usually given the name
Omega (Q), varies between 0. and 2. If Q isset too low, the solution will take an exces-
sive number of iterations; if it is set too high the solution process will "blow up" and no
solution will be found. The simplest way to set Q isto use afixed value. Experience has
shown 0.7 to be a safe choice, and that isthe default. The user may select this, or any
other fixed value, using option 1 for the second line in this set.

10an attempt was made to implement a true multi-grid solver in this code, but it didn't work. 1t was
determined that the basic reason for the failure was that in the finished grid the cell heightsin the direction
normal to the boundary surface increase in a generally exponential fashion with distance from the surface,
but the exact rate of that increase isindeterminate. Thus, although the user specifies the spacing between
the boundary and the first node in the field, it is not possible to specify the spacing between the boundary
and the 2"1-st nodein the field for n>1. That spacing is needed to formul ate the RHS term at the n-th
multigrid level. An estimate can be made, but it is not accurate. Thus, there was afundamental inconsis-
tency between the RHS terms being solved at the different multigrid levels. The different multigrid levels
were attempting to solve what were, in effect, different equations. Obvioudly, such an algorithm would not
converge.

31

Option 2 for the second line in this set uses alocally-varying and time-varying optimum
relaxation parameter. Use of an optimum Q can minimize the number of iterations
required to find the grid solution. It is calculated using the Ad-Hoc method of Erlich.
(Ref. 8). This method requires a significant amount of calculation to find the Q at every
time step, and that can use up time saved by Q being optimum. One solution to this
conundrum is to re-compute the optimum Q at intervals. The "recomputation interval” is
the number of stepsin that interval; it's default valueis 10. Lastly, thereisthe scale fac-
tor for the optimum relaxation parameter. Experience has shown that Q calculated this
way can sometimes be alittle too big, causing blow up. Therefore the user isgiven a
scale factor by which the Q is multiplied; it's default is 0.75.

Just as the "face" lines (described below) give the desired cell heights and the "control”
parameter on thisfirst of these three lines gives aglobal override for it, similarly, the face
lines give values for the abc parameter (also described below) and the third line here
givesaglobal override for it. If anumber appears on thisline, it will take precedence
over the abc parameter values specified on the face line. Theword "no" in that field
causes the abc parameter values specified on the face lines to be used.

The" filename-11" line

Line | Column [Datum
no.: nos. type: Description:
1-18 st "filename-11-input="
19-33 n name of file for input asfilell
34-52 st "-filename-12-output="
53-67 n name of file for input asfilel2

fil enanme-11-i nput=ny_xyz

dat a -filenane-12-i nput=ny_cell heights

1234567890123456789012345678901234567890123456789012345678901234567
1111111111222222222233333333334444444444555555555566666666

Thedatain filell are the X,Y,Z coordinates of points on boundary surfaces, which are
supplied from another source. They are described in detail in a subsequent section.

Users familiar with the input for the earlier 3DGRAPE code should note that logical unit
12, designed for debugging in the earlier code and rarely used, has a completely new
meaning here. In ADGRAPE/AL unit 12 may, depending on the filel0 input, be used to
input the cell heights and skewness of grid cells on boundaries. Itsformat is described in
a subsequent section.

The" filename-14" line

Line Column | Datum
no.: nos: type: Description:
1-24 st "filename-14-grid-output="

32

25-39 n filename for main grid output
40-45 st "-form="
46-52 C "3dgrape” or "plot3ds" or "plot3dm™ or "charact"

filenane-14-grid-output=ny_grid_ file - f or m=3dgr ape
filenane-14-grid-output=ny_grid_ file - f or nepl ot 3ds
filenane-14-grid-output=ny grid file - f or mepl ot 3dm
filenane-14-grid-output=ny grid file - f or mechar act
1234567890123456789012345678901234567890123456789012

1111111111222222222233333333334444444444555

The main grid output may take any one of four different forms. Thefirstisaform
designed for this program, called "3dgrape”. It isbest described by the following pseudo-
code:

open(unit=14, status="new ,fornm" unformatted ,file="ny_grid_file')
write(1l4) maxbl k
do nbl k=1, naxbl k

j max=j maxa(nbl k)

kmax=kmaxa(nbl k)

I max=I maxa(nbl k)

wite(14) jmax, kmax, | max

wite(14) (((x(j,k,l,nblk),j=1,jmx), k=1, kmax), | =1, | max),
1 (((y(j,k,I,nblk),j=1,jmx), k=1, kmax) , | =1, | max),
2 (((z(j,k,1,nblk),j=1,jmax), k=1, kmax), | =1, | max)
enddo

cl ose(uni t=14)

If "plot3ds” is specified the data on filel4 are written in the form required by the well-
known NASA graphics program PLOT3D, using its single-block option. If "plot3dm" is
specified the data on filel4 are written in the PLOT3D format, using its multiple-block
option. These options, also, are best seen in pseudo-code:

open(unit=14, status="new ,form" unformatted' ,file="ny _grid file')
if(maxblk.gt.1) wite(14) naxblk
wite(14) (jmaxa(nbl k), kmaxa(nbl k), | maxa(nbl k), nbl k=1, maxbl k)
do nbl k=1, maxbl k
j max=j maxa(nbl k)
kmax=kmaxa(nbl k)

I max=I maxa(nbl k)

wite(14) (((x(j,k,I,nblk),j=1,jmx), k=1, knax), | =1, | nax),

33

1 ((Cy(
2 (((z(
enddo

cl ose(unit=14)

If "charact” is specified, the data on filel4 are written as formatted data. Thisis useful
for users running on computers connected to a network which does not have the facility
to transfer binary data. A main grid output file created this way will be several times as
large asif either of the three other options had been used, and it will take several times as
long to read and write, but for some users this approach is unavoidable. Thisformis
essentially the "3dgrape” form converted to formatted outpuit:

open(unit=14, status="new ,form=" formatted ,file="ny_grid file')
write(14,100) maxbl k
do nbl k=1, maxbl k

j max=j maxa(nbl k)

kmax=kmaxa(nbl k)

I max=I maxa(nbl k)

write(14,100) jmax, kmax, | max

100 format (3i 10)
wite(14,101) (((x(j,k,I,nblk),j=1,jmx), k=1, kmax), | =1, | max),
1 (((y(j,k,I,nblk),j=1,jmax), k=1, kmax), | =1, | max),
2 (((z(j,k,1,nbl k),j=1,jmax), k=1, kmax), | =1, | max)
101 f or mat (5e15. 6)
enddo
cl ose(unit=14)
The"write-for-restart” line
Line Column | Datum
no.: nos: type: Description:
1-18 st "write-for-restart="
19-20 C either "ye" or "no"
21-40 st "-filename-15-output="
41-55 n filename for restart file

wite-for-restart=no-fil enanme-15-output=ny_restart _file
1234567890123456789012345678901234567890123456789012345
1111111111222222222233333333334444444444555555

3DGRAPE/AL has arestart capability. This should not be confused with the partsin the
iteration schedule. Partsin the iteration schedule are completed during one run; the
restart capability allows it to make more than one run. The user can run it awhile, and
then decide to run it some more, either with or without some changes. More things can
be changed at a restart than when going between parts; everything appearing in files 11
and 16, described in subsequent sections, can be changed at arestart.

To make restart possible, the code writes afile containing all it needs to continue where it
left off. Filel5Sisthat file. It isoutput by the code in the run before the restart, and then
read back in on therestart run. Itisavery largefile, containing the contents of most of
the common arrays, and some other material aswell. Thefileis unformatted, and so not
readable by humans.

The character-string "y€" or "no" in columns 19-20 determines whether the file isto be
written. The file name appears in columns 41-55.

The" omegpqgr” line

Line | Column [Datum
no.: nos. type: Description:
1-8 st "omegpgr="
9-20 c/f relaxation parameter for S& S-type RHS terms
21-28 st "-pgrlim="
29-40 c/f growth limit factor for S& S-type RHS terms

onmegpgr =keep-def aul t - pqr | i mekeep- def aul t
onmegpqr =123456789. 12-pqrl i m=123456789. 12
1234567890123456789012345678901234567890

1111111111222222222233333333334

If the user chooses S& Stype RHS terms, the code iterates to find them at the same time
that it iterates to find the X,Y,Z. Thereisan Q for the S& S-type RHS terms, just as for
the X,Y,Z, dthough its size range is different. The default valueis0.3. Thereisanother
input parameter affecting iterations for finding the S& S-type RHS, and that is"pgrlim".
The S& S-type RHS terms tend to blow up in the first few iterations, so their growth rate
islimited. Their absolute value may grow by not more than this parameter times their

value at the previous time step.11 The default value for thisis 0.5.

The" quality-check"” line

Line Column | Datum
no.: nos. type: Description:
1-14 st "quality-check="

11This has the curious effect of causi ng their growth to be limited by an upward slanting straight line on a
semi-log plot, when plotted as a function of iteration count.

35

15-16 C "ye" or "no"
17-30 st "-output-after="
31-35 C "parts’ or "done "

gual i ty-check=ye

qual i ty-check=ye-out put-after=parts

qual i ty- check=no- out put - af t er =done

12345678901234567890123456789012345
11111111112222222222333333

The program includes a grid quality evaluation feature which computes and prints
maxima, minima, medians, and averages of cell heights and non-orthogonality, at bound-
aries and in the interiors of the blocks of the finished grid. It requires some CPU time
(approximately the same as one-and-one-half fine iterations), and it generates severa
pages of output. The datum in columns 15-16 turns this feature on and off.

By default, the program writes the grid solution file (filel4) and the restart file (filel5)
once, after finishing all the partsin the iteration schedule. But users using large amounts
of computer time may wish to save their work after each part in the iteration schedule. If
"parts" isfound in cols. 31-35, the grid solution file, along with the restart file if arestart
fileis called for, will be written after each part in the iteration schedule. The file names
used will be those given above, with appending characters giving the number of the
iteration part after which they were written. For example, if "parts’ is selected here, and
"my_grid" is given for the name of filel4, and three parts are used in the iteration
schedule, the resulting grid solution fileswill be "my_grid.1", written after the first
iteration part, "my_grid.2", written after the second iteration part, and "my_grid", written
after the last iteration part. "Done" or blanksin cols. 31-35 cause the files to be written
only once, after the last iteration part.

Everything after column 16 is optional.

The foregoing input data records give information about the entire grid-generation
operation being conducted by this run of SDGRAPE/AL. Following these lines the pro-
gram goes into an outer loop on the block numbers. For each block a group of lines must
be read which give characteristics of the block.

The" block-comment" line

Line | Column [Datum
no.: nos. type: Description:
1-6 st "block-"
7-8 [number of this block
9-20 st “-comment "
21-70 C free-field comment describing this block

36

bl ock- 01- coment Bl ah, bl ah, bl ah
1234567890123456789012345678901234567890123456789012345678901234567890
1111111111222222222233333333334444444444555555555566666666667

The comment in the comment field of the block statement will be used to annotate the
printout. The printout will include a convergence history for each block, labeled with
these comments.

The"dimension" line

Line Column | Datum o
no.: nos. type: Description:
1-12 st "dimension-j="
13-15 [maximum value of first subscript, j
16-28 st "-dimension-k="
29-31 [maximum value of second subscript, k
32-44 st "-dimension-1="
45-47 i maximum value of third subscript, |

di mensi on-j =019- di mensi on- k=031- di nensi on-1 =022
1234567890123456789012345678901234567890123456789012345678901234567890
1111111111222222222233333333334444444444555555555566666666667

The dimensions of each block are variable, and may be set by the user at execution time.
The dimension sizesmust in every case be at least 4. If "coarse" iteration steps areto be
performed, then the dimension sizes must be of the form 3n+1 for n some integer greater
than or equal to 4. The upper bound on these dimension sizesisindirect. They determine

the total number of pointsin the grid, which islimited by one of the parametersin
"params.h", which islimited by the memory of the computer on which the programis

installed.

The" handedness' line

Line Column | Datum
no.: nos: type: Description:
1-11 st "handedness="
12 c either "r" or "I"
13-22 st "-initcond="
23 C either "j" or "k" or "I" or "t" (see below)

37

24-33 st "-cart/sph="

34-42 C either "Cartesian” or "spherical”
43-50 st "-numtfi="

51-53 cli number of TFI iterations (see below)

handedness=r-i nitcond=j-cart/sph=cartesian
handedness=r-i ni t cond=k-cart/sph=spherica
handedness=r-i ni t cond=l -cart/sph=cart esi an- nunt f i =kdf
handedness=Il -i ni t cond=t-cart/sph=cartesi an-nunt fi =010
12345678901234567890123456789012345678901234567890123
11111111112222222222333333333344444444445555

The "handedness’ of the grid -- either right-handed or left-handed -- may vary from block
to block. For Laplacian gridsitisirrelevant. But for grids with control activated it is
used to choose the sign of a square root in the computation of the S& S-type RHS terms,
SO it must be set properly.

The handedness of a grid can be determined according to the right-hand rule, or in the
following equivalent way. Choose any point (j,k,I). A unit vector inthe & directionisa
vector from that point to the point (j+1,k,1). Similarly, aunit vector inthen directionisa
vector from (j,k,I) to (j,k+1,1), and a unit vector in the { direction isfrom (j,k,I) to
(.k,1+1).

The three vectors will be bound tail-to-tail-to-tail at the point (j,k,l). Imagine them
defining the axes of alocally Cartesian &,n,(coordinate system. Imagine an ordinary
screw, placed coincident with the axis. Then imagine rotating some point on the head
of that screw from the positive axisto the positive n axis. If that rotation produces
movement of the screw in the positive direction, then the grid is right-handed. If that
rotation produces movement in the negative ¢ direction, then the grid is |eft-handed.

When using spherical topology (see below), X,Y,Z coordinates of each point in the block
are converted to spherical coordinates p,8,@ This transformation can sometimes cause
the handedness to be reversed, in which case the handedness on this input line must be
reversed. The symptom of this problem is that when the RHS terms are activated utterly
nonsensical cell heights at the body rapidly emerge, either much too large or having
negative volumes. If this happens, asit did in the hemisphere-cylinder-cone example
case which is shown in a subsequent section, the user should simply reverse the
handedness in the input data for the block.

The character in column 12 should indicate that handedness: "r* for right-handed or "I"
for left-handed. Users frequently make mistakes on this point, with the result being grids
with lines repelled from the controlled faces rather than attracted. Rather than agonize
analytically over this point, the user encountering such symptoms might want to simply
reverse the handedness and try again.

In starting an execution of the grid generator, once points have been initialized in some
way on all six faces of the block, the need arises to initialize the points inside the block.
There are two options here. Thefirst isto have the interior points distributed between

opposing boundary points on a straight line, with spacing along that line determined by

38

Vinokur's two-ended stretching algorithm.12 The user chooses the coordinate direction in
which that distribution is to be applied by entering j, k, or | in column 23.

The second option for distributing the pointsin the interior of the blocksisto use Three-
Dimensional Trans-Finite-Interpolation (TFl). To use thisoption, the user should place
"t" in column 23. Note that the use of TFI in this code requiresthat all six faces of the
block consist of fixed points. Therefore, if any block has a face which has points floating
about on an analytical surface, or aface which is a block-to-block boundary face, this
option cannot be used.

It has been stated that SDGRAPE/AL should be able to make agrid in any region into
which a cube or cubes can be warped. Thisistrue, but for cases having spherical
topology, i.e., having a spherical axis, certain mathematical singularities occur and spe-
cial measures must be taken. The coordinates in such zones are transformed from

Cartesian coordinates X,Y,Z into spherical coordinates p,0,@ Aniteration is performed
on the grid in that space. Then the outermost four shells (or cubic surfaces) are converted
back to Cartesian coordinates. Boundary conditions are applied, and the surfaces are
transformed back into spherical coordinates. Thisisiterated to convergence, and the
entire block is transformed back into Cartesian coordinates before being written out.

To utilize this option in any block, the user should put "spherical" into columns 34-42.
Otherwise, "cartesian” should be entered in those columns. The spherical axis must be
coincident with one of the coordinate axes.

The 3-D TFI algorithm iterates to optimize the volume distribution, and the datum in
cols. 51-53 is the number of iterations used. "kdf" here, meaning "keep default,” causes
10 iterations to be used. Thisdatum isonly referenced if "t" is placed in column23;
otherwise it isignored.

The" polar-axis' line

Line Column | Datum o
no.: nos. type: Description:
1-11 st "polar-axis="
12 c either "x" or "y" or "z"
13-19 st "-along="
20 C either "j" or "k" or "I"
21-28 st "-around="
29 C either "j" or "k" or "I"
30-37 st "-center="
38-49 f location on polar axis of spherical center

12v/inokur, M., "On One-Dimensional Stretchi ng Functions for Finite-Difference Calculations,” J. Comp.
Phys., val. 50, no. 2, May 1983, pp. 215-234.

39

pol ar - axi s=x- al ong=k- ar ound=l - cent er = 100.
1234567890123456789012345678901234567890123456789
1111111111222222222233333333334444444444

Thislineisread only if "spherical” appears on the preceding line. In that case,
3DGRAPE/AL needsto know which axisisthe polar axis. That datum is entered in col-
umn 12. The program then needs to know which index runs along that axis, entered in
column 20, and which index runs around it, entered in column 29. In the spherical case
neither the body nor the outer boundary need be exactly spherical, but they should be
somewhat similar to a sphere. Given that, it should be possible to locate an approximate
center to that sphere. That center would, of course, lie on the spherical axis. The location
of the approximate center is given by entering its location on the axis in columns 38-49.

The" freezeblock" line

Line Column | Datum

no.: nos: type: Description:
1-12 st freezeblock=
13-15 Cc "yes' or "no"

freezebl ock=no

freezebl ock=yes

1234567890123456789012345678901234567890123456789
1111111111222222222233333333334444444444

In generating alarge, multiple-block grid, it is sometimes advantageous to be able to
freeze some of the blocks while continuing to iterate on others. If "no ™ or blanks are
placed in columns 13-15, the block will beiterated, asis normally the case. If "yes is
placed in those columns, this block will not be iterated, and will be frozen. Thisline
must be present, or an error will result.

This concludes the inputs which give characteristics of the block. At this point
3DGRAPE/AL goesinto an intermediate loop on the six faces of the computational cube.
It expects to read information which applies to each face. Blank lines may appear before
a"face" line.

The" face" line

Line | Column [Datum
no.: nos. type: Description:
1-5 st "face-"
6 i face number
7-13 st "-sects="
14-15 [number of sectionsinto which this faceis divided

40

face-
face-
face-
f ace-
f ace-

e e el

16-23 st "-normal="

24-35 c/f "uncontrolled" or cell height or "n-i-stations" or "read-
each-pt" (see below)

36-40 st "-abc="
41-52 clf "keep-default” or stretching parameter
53-58 st "-angs="

59-70 C "keep-default” or "default+edge” or "def-1-read-2" or
"read-1-def-2" "read-each-pt" (see below)

-sect s=01- nor mal =uncontrol | ed- abc=123456789. 12- angs=keep- def aul t
-sect s=01- nor mal =123456789. 12- abc=keep- def aul t - angs=def aul t +edge
-sect s=01- nor mal =4- k- st ati ons- abc=keep-def aul t - angs=def - 1-read- 2
-sect s=01- nor mal =r ead- each- pt - abc=keep- def aul t - angs=r ead- 1- def - 2
-sect s=01- nor mal =r ead- each- pt - abc=keep- def aul t - angs=r ead- each- pt

1234567890123456789012345678901234567890123456789012345678901234567890

1111111111222222222233333333334444444444555555555566666666667

The face numbers should appear in numerical order, from one to six. The face may be
divided into sections. The maximum number of sections per faceis 10.

The overall purpose of the datain columns 24-35 is to specify whether or not the cell
heights on the boundary surface will be controlled or not, if so how the required cell
heights are to be given, and in one case to actually give the height. There are four differ-
ent forms acceptable here:

Thefirst is"uncontrolled.” This means that the control terms are deactivated on
thisface. Thisboundary treatment should be used for any boundary that is not a
fixed boundary.

The second form of input isto simply enter a floating-point number. This acti-
vates the control terms on thisface. The program will try to make the cells touch-
ing this face be locally near-orthogonal, and will try to make them the height,
given in user units, by the floating-point number. Thisinput form causes the
program to attempt to make the cell heights on this face be of uniform height.

The third form of input in columns 24-35 islisted as "n-i-stations.” The use of
guotes around that datum is questionable, since that character-string asis should
never be used. In place of the "'n" anumber from 2 to 9 should be substituted. In
place of the "i" anindex ("j" or "k" or "I") should be substituted. For certain
problems the user might require cell heights on a face which are controlled, but
are not uniform. 3DGRAPE/AL allows the specification of cell heights which are
invariant with respect to one index but are varying as a piecewise continuous lin-
ear function of the other index. Thisform of input alowsthat. The piecewise
continuous linear function is defined by giving the desired cell height at several
values of the index, including its end points. The number in place of the"n" isthe
number of points at which avalue for the cell height isto be given. Theindex
substituted for the "i" is the index at values of which cell heights are to be given.
For example, "4-k-stations' meansthat at k equals 1, at k equals its maximum

41

value, and at two intermediate values of k, cell heights will be given. The
required cell heights between those places will be found by linear interpolation.

o Lastly, the datain columns 24-35 may be "read-each-pt". This givesthe user total
flexibility in setting the required cell heights. From some other source, such asa
small program he has written just for this purpose, the user supplies one floating
point number per point on the surface, giving the required heights of cells on the
surface. The points and cells are ordered in the standard Fortran way, with the
first subscript varying fastest. The cell heights should be a smoothly varying
function over the boundary face. The user isresponsible for making them so. If
they are discontinuous, problems will result. These data are supplied in input
filel2. Seethe description of it in a subsequent section.

Control should never be activated on a face which has coincident points. Where
points are coincident, certain derivatives are undefined. The calculation of the
S& S RHS terms requires all derivatives of first and second order. But for an error
trap, division by zero would resullt.

A tip --> Realize that you don't have to use control terms everywhere; just use them on
those boundary surfaces where you really care about the cell height. Let the elliptic
method supply them elsewhere. This will simplify things and contribute to the
robustness of the solution.

Another tip --> As you turn the control terms on there is a "game plan" you might want
to follow. First, for each face having control terms activated, calculate the physical
distance from a typical point on that face to its correspondent point the opposite face.
That distance should then be divided by the number of intervals on the line connecting
those points, yielding what would be the spacing on that line if that spacing was uniform.
The user should compare that uniform spacing to the spacing being requested. For the
first try, the requested spacing should be between one-half and one-fifth of the uniform
spacing. Once convergence has been achieved, if you want smaller spacing at the wall
you can then reduce the requested spacing in increments. Just how much it can be
reduced is dependent on both the problem and the precision of your machine, and is
impossible to predict generally. The symptom of not working, of course, is that the
iterative grid-generation process will not converge. These multiple runs can either be
repeated restarts, or each can start from initial conditions, at your discretion.

One more tip --> Consider the sizes of the grid cells on the boundary faces where
control is activated. Divide the greatest dimension of any cell on the surface by the
height being requested. It is recommended that that aspect ratio not be less than one,
i.e., cells on the wall should not be taller than they are wide. For the first try, as in the
preceding paragraph, that ratio should be no larger than about 5. Once that has worked
you may increase that ratio in increments, by reducing the normal distance given in
columns 24-35. Grids have been generated with aspect ratios as large as 10,000:1.

When control on afaceis activated, SDGRAPE/AL will attempt to make the grid cells
immediately adjacent to that face conform to the required cell height and skewness. With
distance from the face, into the interior of the block, control of height and skewness
decays. Thusin the middle of the block the grid is essentially uncontrolled. That decay-
ing control allows the distance between points on lines normal to the faceto increasein a
guasi-exponential manner with distance from the face. But how fast does that control
decay with distance inward? Thereis aparameter, called abc, which influences the rate

42

of decay. The default value for that parameter is 0.45. The user may override that default
by placing a floating-point number in columns 37-39. A larger number, such as 0.60 or
0.70, will cause the control to decay more rapidly, and will make the grid-generation
convergence more stable. Decreasing that parameter to values such as 0.40 or 0.35 will
cause the control to be propagated farther into the field, at the expense of decreasing the
stability of the grid-generation convergence.

The"angs' input datum, in columns 59-70, specifies whether the grid lines intersecting
the boundary surface are to be locally orthogonal, or not, and if not, then by just how
much and in what way. There are five acceptable values. Thefirst is"keep-default”.
This causes the program to attempt to make al the lines which intersect the boundary
surfaces to do so orthogonally.

The second acceptable value is "default+edge”. Thisisthe paradigm which replaces the
"lightening/tightening” feature in the earlier version of the code. It meansthat the
program will attempt to make the lines intersect the boundary surfacein alocally
orthogonal manner everywhere except near a specified coordinate line (or lines) running
across the surface. Thereit will bend the grid lines toward or away from the specified
line in amanner which eases the grid over the discontinuity. It is expected that the user
will use thisin instances where the physical model being gridded has a sharp corner run-
ning across a surface. An example would be a cylindrical grid wrapping around an air-
craft fuselage which has a strake.

The third and fourth acceptable values make reference to the fact that when agrid line
intersects a boundary surface, to specify its orientation requires two data. Intersecting at
every point on agrid boundary surface are two surface coordinate lines. There are two
indices running on the surface, with the remaining index fixed on the surface. One
running index varies along one of the coordinate lines, and the other running index varies
along the other coordinate line. The six faces of the computational cube are arbitrarily
given numbers, as shown in the following table. For purposes of thisinput datum we
order the indices alphabetically, also shown:

Face number: Fixed index: First running Second running
index: index:
1 =1 k I
2 J=jmax k I
3 k=1] I
4 k=kmax] I
5 =1] k
6 |=Imax | k

Table7. Face Numbersand Indices

When "def-1-read-2" is given in columns 59-70 the angle that the line intersecting the
surface makes with the first coordinate line (along which varies the first running index) is
required to be 90°, while the angle the line makes with the other coordinate line (along
which varies the second running index) isread in from filel2. When "read-1-def-2" is
given in columns 59-70 the angle that the line intersecting the surface makes with the first
coordinate line (along which varies the first running index) isread in from filel2, while
the angle the line makes with the other coordinate line (along which varies the second
running index) is required to be 90°.

43

The fifth acceptable value in columns 59-70 is "read-each-pt". When thisis chosen, the
angles with respect to both the first and second coordinate lines on the boundary surface

areread from filel2.

The" norm/sect" line

Line | Column [Datum
no.: nos. type: Description:
1 1-10 st "norm/sect="
1 11-13 i value of the index locating first point
1 14 st "
1 15-26 f cell height at first point
1 27 st "
1 28-30 i value of the index locating second point
1 31 st "
1 32-43 f cell height at second point
1 44 s |
1 45-47 i value of the index locating third point
1 48 st "
1 49-60 f cell height at third point
nor m sect =001- 3. -011- 6.3 -020- 37.3

123456789012345678901234567890123456789012345678901234567890
111111111122222222223333333333444444444455555555556

Whether there are other lines of input describing the face is dependent upon what values
appear on the "face” line. The "norm/sect” line (or lines) should be present only if "n-i-
stations" is chosen for columns 24-35 on the "face" line. It should immediately follow
the "face" line, giving the values for cell height which make up the piecewise linear
function. There may be up to three of these lines, allowing up to nine stations across a
face. Subsequent of these lines have exactly the same format as the first.

Thefirst typeof " edges’ line

Line
no.:

Column
nos;

Datum
type:

Description:

1-2 cli "no", or the number of values of the first index at which
there is an edge along which the second index runs
3 s |
4 C the first running index
5-11 st "-edges-"
12-13 cli "no", or the number of values of the second index at which
there is an edge along which the first index runs
14 s |
15 C the second running index
16-21 st "-edges-"
22-28 st "-nramp="
29-31 cli "kdf" or the number of points over which the edge
treatment is to be ramped

no-j - edges- 10- k- edges

no- j - edges- 10- k- edges- nr anmp=kdf

no- j - edges- 10- k- edges- nr anmp=005

1234567890123456789012345678901
1111111111222222222233

Whether or not this line should be present depends upon what is given on the "face” line.
It should be present only if columns 59-70 of the face line contain "default+edge”.
Above, the concept of sharp edges in the geometry being coincident with surface grid
lineswas introduced. If that isthe case, and the special treatment for it isto be employed,
this line must appear. It tells the program how many edges being coincident with each of
the two families of surface coordinate linesthere are.

Each of the example lines, immediately above, describe edges running across aface
numbered 5 or 6. We know that because the running indices on that face are given as"j"
and "k" (see the preceding table on face numbers and indices). The example input data
record tells us that there are no values of j at which there is an edge having k running
along its entire length. It also tells us that there are ten values of k at which thereisan
edge having j running along its entire length.

The last datum on thisline, nramp, in columns 29-31, is the number of cellsto each side
of the sharp edge over which the specia treatment is applied. It is"ramped up" from
none to maximum right at the edge. The default value here, 5, will be used if "kdf,"
meaning "keep default” is entered. Other positive integers can be used instead.

The second type of " edges’ line

Line Column | Datum
no.: nos. type: Description:

45

1-9 st "edges-at-"
10 C the running index referred to in the preceding "edges' line
11 st "=
12-14 i avalue of the index at a constant value of which the edge
is
15 st
16-18 i avalue of the index at a constant value of which the edge
is
19 st
20-22 i avalue of theindex at a constant value of which the edge
is

...and continuing across the line in the obvious way as needed

edges- at - k=001- 007- 017- 044- 065- 176- 280- 335- 399- 401
12345678901234567890123456789012345678901234567890
11111111112222222222333333333344444444445

Thisline, like the previous (first type of) edge line, should appear only if columns 59-70
of the face line contains "default+edge”. There should be one of these lines for each of
the two indices which has edges, as described in the previous (first type of) edgeline. In
other words, the edge treatment can be applied along one index direction, or in both index
directions; corresponding to that, there should be one or two of these lines. The example
of the previous (first type of) edge line showed no edge treatments along lines having
fixed j, and ten edge treatments along lines having fixed k. There are, in this example, 10
such lines of fixed k, at the given values of k, with j varying along those lines.

Summarizing now, there is an outside loop on the block number, and within that thereis
an intermediate loop on the face number. For each of the six faces, in numerical order,
there must be a"face" line. Then, depending on whether or not they are called for in the
"face" line, there may be "norm/sect” line(s) and the two types of "edge" lines. At this
point all of the data pertaining to the face (as distinct from the sections into which it may
be divided) have been read. It istime to go into the innermost loop on section number for
each face. Typically, each faceisone section. The ability to divide aface into multiple
sectionsisrarely used, and so in what follows "section” can usually be thought of as
equivalent to "face." However, when multiple sections are needed, that capability is
available and very important.

It isfor purposes of determining the X,Y,Z locations of the points on the boundary faces
of the block that faces can be divided into sections. A face can be divided into as many
asten sections. There are eight different boundary treatments 3DGRAPE/AL offersfor
locating boundary points, and any of those treatments may be applied to each section.

The preceding input lines were given in the order in which they appear in the input file.
But here ends any semblance of such order, since the boundary treatments listed below
may be applied to any section of any face.

46

The following specifications for boundary treatment of sections of faces all include the
range of indices to which those treatments apply. It isthe user's responsibility to check
those ranges to make sure that they add up to treatment of the entire face. It would be
quite possible to divide a face into sections by index limits and leave holes untreated or
have overlapping treatments. Overlapping treatments are inelegant, but rarely cause
problems. Leaving holes untreated, however, should be avoided.

A closely related problem is treating the edges of the block, each of which isthe
intersection of two faces. Here again they might be treated once, by one of the two inter-
secting faces, twice, by both of the two intersecting faces, or they might be not treated at
al. Redundant treatment is clumsy, but not afatal error. When there are such redundan-
cies, the treatment associated with the face having the highest face number will take
precedence. But failing to treat an edge in any way will be a sure cause of failure. A
checking procedure has been added to the code which checks for nonexistent or redun-
dant treatment of edges and corners, and will give warnings or error messages if they are
encountered.

Immediately following the input(s) pertaining to each face there should follow one of the
following boundary treatment inputs for each section on the face, with no intervening
blank lines. The ordering of the sections of each faceisirrelevant.

The"read-in-fixed" line

Line | Column [Datum
no.: nos. type: Description:
1-18 st "read-in-fixed-xyz-"
19 C first index on the face: "j" or "k"
20-25 st "-from-"
26-28 i starting value of first index
29-32 st "-to-"
33-35 i ending value of first index
36 s |
37 c second index on the face: "k" or "I"
38-43 s |"-from-"
44-46 [starting value of second index
47-50 st "-to-"
51-53 i ending value of second index

read-in-fixed-xyz-j-from001-to0-025-k-from 001-to0-025
12345678901234567890123456789012345678901234567890123
11111111112222222222333333333344444444445555

47

This treatment is used for inputting afixed boundary surface, typically the shape or part
of the shape about which or inside of which the user desiresto make agrid. In other
words, this treatment is used for the "body" of interest. As stated previously, these points
on this surface must be distributed properly by some other device prior to input here. The
points on this surface must be distributed with two running indices, asistypical of any
surface mapping into the side of a computational cube. Those X,Y,Z data are not actually
read from thisfile, filel0. Instead, upon reading the "read-in-fixed" input line,
3DGRAPE/AL looksto filell from which it actually reads the data. Filell is described
in a subsequent section. After reading X,Y,Z datafor this section of this face from filell
the program returns to filel0 and continues reading.

The" plane-normal-to" lines

Line | Column [Datum
no.: nos. type: Description:
1 1-16 st "plane-normal-to-"
1 17 C axisto which perpendicular: "x" or "y" or "z"
1 18-26 st "-axis-at-"
1 27 C axisto which perpendicular: "x" or "y" or "z"
1 28 st ="
1 29-40 f location on axis
1 41 st "
1 42 C first index on the face: "j" or "k"
1 43-48 st "-from-"
1 49-51 i starting value of first index
1 52-55 st "-to-"
1 56-58 i ending value of first index
1 59 st "
1 60 c second index on the face: "k" or "I"
1 61-66 st "-from-"
1 67-69 i starting value of second index
1 70 "
2 1-6 st "..10-"

48

2 7-9 i ending value of second index

2 10-19 st "-ext/proj="

2 20-31 f the extrapol ate/project parameter

2 32-47 st “-initial-point=("

2 48-59 f the value of the first coordinate at the initialization point

2 60 st

3 1-3 st "L

3 4-15 f the value of the second coordinate at the initiaization
point

3 16 st ")

pl ane-normal -t o-y-axi s-at-y= 17.98 -j-from001-to-025-k-from 001-

...to—OZES-Zfaét/proj: 0.0 -initial-point=(4.0

ié.34567890123456789012345678901234567890123456789012345678901234567890
1111111111222222222233333333334444444444555555555566666666667

The points in this section, as defined by the given indices, will be constrained to lie on a
plane normal to the indicated axis, at the indicated value on that axis. The distribution of
points on that plane will be found by extrapolating from the elliptic grid solution in the
interior of the block.

There are two different algorithms used for extrapolating to the plane from pointsin the
interior. Thefirst isastraight drop, from the neighboring point in the interior directly to
the plane. Thisisthe most stable, and is recommended for most applications. Thistype
of extrapolation is selected by entering 0.0 in the "ext/proj"” field, in columns 20-31 of the
second line. The second algorithm extrapolates from three points in the interior by the
use of aparabola. This method is specially designed to try and bring the point into the
plane normally, to reduce the tendency for the method to go unstable. This method
should be used only when an adjacent side boundary face does not intersect this face
normally, and the user wishes to make this extrapolation more sensitive to the adjacent
boundary shape. Thistype of extrapolation is selected by entering 1.0 in the "ext/proj"
field, in columns 20-31 of the second line. The user can use a blending of the two
methods by entering a number between 0.0 and 1.0 in thisfield.

Initialy, all the pointsin this section are put at one point somewhere on the plane. With
successive iterations the points spread out and go to where they should be. But that initial
point could be anywhere on the plane, which isinfinitely large. The user suppliesthe
location of theinitial point. Of the three coordinates X,Y,Z, oneis constant on the plane
and is specified on thefirst line. The other two coordinates, in alphabetical order, are
given by the user in columns 48-59 on the second line and columns 4-15 on the third line.
In this example, the planeis normal to they axis at y=17.98, and therefore the user gives
the X and Z coordinates of theinitial point on the second and third lines as 4.0 and -2.5.

49

A tip --> The fact that points on the plane are initialized to the one initial point is one
reason why the grid, when plotted after zero iterations (i.e., when set to the initial
conditions) sometimes looks weird. But most of that weirdness goes away after the first
few iterations.

The" cylinder-about" lines

Line Column | Datum
no.: nos. type: Description:
1 1-15 st "cylinder-about-"
1 16 c name of axis: "x" or "y" or "z"
1 17-27 st "-axis-from-"
1 28 c name of axis: "x" or "y" or "z"
1 29 st =
1 30-41 f starting value on axis
1 42-45 s |"-to"
1 46 c name of axis: "x" or"y" or "z"
1 47 s ="
1 48-59 f ending value on axis
1 60 st =
1 61 c name of index along cylinder: "j" or "k" or "I"
2 62-68 st "-along-"
2 1-13 st "-axis-from-"
2 14-16 i starting value of index along
2 17-20 st "-to-"
2 21-23 i ending value of index along
2 24 s =
2 25 c name of index along cylinder: "j" or "k" or "|"
2 26-38 st "-around-from-"
2 39-41 i starting value of index along

50

2 42-45 st "-to-"

2 46-48 i starting value of index around

2 49-60 st "-with-angle="

3 1-3 st "L

3 4-15 f starting value of angle around (in degrees)

3 16-25 st "-to-angle="

3 26-37 f ending value of angle around (in degrees)

3 38-45 st "-radius="

3 46-57 i radius of cylinder

3 58-67 st "-ext/proj="

4 1-3 st "L

4 4-15 f the extrapol ate/project parameter
cyl i nder - about - x- axi s-from x=100. -to-x= 750. -j -al ong-
...axis-from002-t0-033-1-around-from 002-to-021-with-angl e=

ca- 98 0 -to-angl e= +90. -radi us= 500. -ext/proj=

iéé4567890123456789012345678901234567890123456789012345678901234567890
1111111111222222222233333333334444444444555555555566666666667

The points in this section, as defined by the given indices, will be constrained to lie on the
surface of acylinder. That cylinder must have its axis coincident with one of the
coordinate axes. The program needs to know the limits of the cylinder in the axial
direction. Note that the "starting value" on the axis should correspond to the starting
value of the index running along the axis, and the "ending value" on the axis should cor-
respond to the ending value of that index. The index limits should be given in increasing
fashion, i.e., the ending limit of the index should be greater than the starting value. But
the physical problem may demand that the values on the axis corresponding to those
indices be given in decreasing fashion, i.e., the ending value on the axis may be smaller
than its starting value. That is acceptable.

The cylinder need not displace the entire 360°. For example, in an agrodynamic
application which assumes no yaw, the grid typically covers only one side, requiring a
cylindrical section of 180°. Thus starting and ending values of the angle around the
cylinder areinput. Those angles are defined according to the increasing index convention
for right-handed coordinate systems, and a decreasing index convention for |eft-handed
systems. An alternate explanation of that angle definition isasfollows. The cylinder's
axisis one of the coordinate axes. The user should imagine his eye far out on the positive
end of that axis, looking back toward the origin at the entire grid. The user will then be
looking at a coordinate plane in which lie the two other axes. That plane should be
rotated, and the entire grid with it, about the cylindrical axis until the positive end of one
of those other two axes points to the right and the other positive end points up. The user

51

can then imagine a conventional 2-D polar coordinate system on that plane, with the
angle equal to zero on the right and increasing in counterclockwise fashion. It iswith
respect to that angle that the starting and ending angles entered in columns 4-15 and
26-37 of the third input line are measured.

The axis values and the angles are used only for locating the initial conditions. Thus
great precision is not required.

Note that the starting and ending values of the index running around the axis should be
given in increasing order, i.e., the ending value must be greater than the starting value.
But the starting and ending values of the angle need not be so ordered; the physical
problem may require that they be ordered backwards. That is acceptable.

As with the plane-normal-to, above, there are two algorithms available to extrapolate to
the cylinder from pointsinside of it. Thefirst, selected by using 0.0 for "ext/proj=", does
asimple projection from the point inside to the nearest point on the cylinder, i.e., to a
point at the same axial station, the same angle around the axis, and a greater radius.
Using 1.0 for "ext/proj=" causes the point to be extrapolated linearly from two points
inside of the cylinder. The user can blend the two treatments by using a value between
0.0 and 1.0. Useof 0.0 is recommended.

The" dlipsoid” line

Line | Column [Datum
no.: nos. type: Description:
1 1-17 st "ellipsoid-x-cent="
1 18-29 f x-coordinate of center of ellipsoid
1 30-37 st "-y-cent="
1 38-49 f y-coordinate of center of ellipsoid
1 50-57 st "-z-cent="
1 58-69 f z-coordinate of center of ellipsoid
2 1-10 st "LX-semi="
2 11-22 f length of semi-span in x-direction
2 23-30 st "-y-semi="
2 31-42 f length of semi-span in y-direction
2 43-50 st "-z-semi="
2 51-62 f length of semi-span in z-direction
2 63 st "
2 64 C name of first index: "j" or "k"
2 65-70 st "-from-"

52

oo o0 o0 o0 o0 o b~ b B B B B B OO WO WO LW L0 LU W W W W W W w

1-3

7-10
11-13
14
15
16-21
20-24
25-28
29-31
32-55
56-67
68
1-6
7-18
19-30
31
32-38
39
40-64
1-3
4-15
16-19
20-31
32-41
42-53

starting value of first index

"o

ending value of first index

name of second index: "k" or "|"
"-from-"

starting value of second index
"o

ending value of the second index
"-|atitudinal-angle-from-"

starting latitudinal angle

..to-"
ending latitudinal angle
"-polar-axis="

"x","y", or"z", the polar axis

"-index="

", "k, or "I", the index which goes along the axis

"-longitudinal-angle-from-"
starting longitudinal angle
n _to_ll

ending longitudinal angle
"-ext/proj="

the extrapol ate/project parameter

53

el I i psoi d- x- cent =100. -y-cent = 0. -z-cent= 0.

...X-sem = 500. -y-sem = 500. -z-sem = 500. -j-from

...002-t0-018-1-from 002-to0-021-1 atitudi nal -angl e-from 123456789. 12-

...10-123456789. 12- pol ar - axi s=x-i ndex=j -1 ongi t udi nal - angl e-from

... 123456789. 12-t 0- 123456789. 12- ext/ proj =123456789. 12

1234567890123456789012345678901234567890123456789012345678901234567890
1111111111222222222233333333334444444444555555555566666666667

The points on aface, or on a section of aface, may be constrained to lie on the surface of
an ellipsoid. A sphere, of course, isaspecial case of an ellipsoid. The center of the
ellipsoid may lie anywhere, and that location is given on thefirst line. The ellipsoid
must, however, have its semi-axes parallel with the coordinate axes. The shape of the
ellipsoid is defined by the length of the semi-axes. The length of the semi-axisin the x-
direction, i.e., the distance from the center to the surface measured in the x-direction, is
given in columns 11-22 of the second line. The other semi-axes are given similarly.

We will initialize the points on this ellipsoid as lines of latitude and longitude. For
purposes of initialization the user designates which axisisto be the polar axis, and the
range of latitudinal angles (north and south of the equator on the earth). Positive angles
are toward the positive end of the given polar axis, zero is at the equator, and negative
angles are toward the negative end of the given polar axis. Thus these angles must be
between +90 and -90 degrees. We also need to know which index goes in the latitudinal
direction. Thisindex goesfrom the "from" latitudinal angle to the "to" latitudinal angle.
Thus by swapping these angles the index can be made to run the opposite way.

We also need to know the range of longitudinal angles (east and west on the earth).
Those angles are defined according to the increasing index convention for right-handed
coordinate systems, and a decreasing index convention for left-handed coordinate
systems. Thisisthe same way asthe angle in the cylindrical face treatment. The user
should imagine his eye far out on the positive end of the polar axis, looking back toward
theentire grid. The user will then be looking at a coordinate plane in which lie the two
other axes. That plane should be rotated, and the entire grid with it, about the polar axis
until the positive end of one of those other two axes points to the right and the other posi-
tive end points up. The user can then imagine a conventional 2-D polar coordinate sys-
tem on that plane, with the longitudinal angle equal to zero on the right and increasing in
counterclockwise fashion.

For example, suppose that in aright-handed coordinate system the Y axisis given asthe
polar axis. Thisleavesthe X and Z axesin the plane. Rotating them as described above
resultsin the positive end of the X axis being to the right and the Z axis pointing upward.
Thus, in this case, the longitudinal angle would be measured from the X axis around
counterclockwise, encountering the positive end of the Z axis at 90 degrees.

Because we know which face number thisis we know which two indices run over it.
Thus, knowing which index runs in the latitudinal direction, we, by process of elimi-
nation, know which index runsin the longitudinal direction. That index will be equal to
its minimum on this section at the "from" longitudinal angle, and at its maximum at the
"to" longitudinal angle. Asabove, thisindex may be caused to run the other way by
swapping the "from™" and "to" angles.

The user should realize that all the foregoing about locating the points at lines of constant
latitude and longitude applies only to theinitialization. The points are free to move
around during the iteration process, according to the emerging solution in the interior of
the block.

As with the plane-normal-to, above, there are two algorithms available to extrapolate to
the ellipsoid from pointsinside of it. Thefirst, selected by using 0.0 for "ext/proj=", does
asimple projection from the point inside to the nearest point on the ellipsoid. Using 1.0
for "ext/proj=" causes the point to be extrapolated linearly from two pointsinside of the
ellipsoid. The user can blend the two treatments by using a value between 0.0 and 1.0.
Use of 0.0 is recommended.

The" collapsed-to-an-axis" lines

Line | Column [Datum

no.: nos. type: Description:

1 1-13 st "collapsed-to-"

1 14 C name of the axis. "x" or "y" or "z"

1 15-25 st "-axis-from-"

1 26 C name of the axis. "x" or "y" or "z"

1 27 st ="

1 28-39 f starting value on the axis

1 40-43 st "-to-"

1 44 C name of the axis. "x" or "y" or "z"

1 45 st ="

1 46-57 f ending value on the axis

1 58 st "

1 59 C name of index along axis: "j" or "k" or "I"
1 60-66 st "-along-"

2 1-13 st "...axis-from-"

2 14-16 i starting value of the index along axis
2 17-20 st "-to-"

2 21-23 i ending value of the index aong axis
2 24 st "

2 25 C name of index around axis. "j" or "k" or "|"
2 26-38 st "-around-from-"

55

2 39-41 i starting value of index around axis

2 42-45 st "-to-"

2 46-48 i ending value of index around axis

2 49-58 st "-ext/proj="

2 59-70 f the extrapol ate/project parameter
col | apsed-t o-x-axi s-from x= 0. -to-x= -400. - k- al ong-
...axis-from002-to0-031-|-around-from 001-to-022-ext/proj= 0.0

1234567890123456789012345678901234567890123456789012345678901234567890
1111111111222222222233333333334444444444555555555566666666667

Certain topologies, such as spherical or cylindrical grids, give rise to the need for aface,
or a section of aface, to be collapsed to an axis. Thisinput option allows that treatment.
Note that the points on the axis are found by extrapolating to the axis, and so the
distribution of points on the axisis that which results from the elliptic solution. Elliptic
grids tend to be uniformly distributed, absent the effect of control terms. Thusthe
distribution of points on faces collapsed to axes tends to be uniform.

The axis values given here are used only for locating the initial conditions. Thus great
precision is not required.

The starting and ending values of the indices should be given in increasing order, i.e., the
ending values should be larger than the starting values. This sometimes means that the
corresponding starting and ending values on the axis must be given in decreasing order,
i.e., with the ending values less then the starting values. That is acceptable.

There are two different algorithms used for extrapolating to the axis from pointsin the
interior. Thefirst isastraight drop, from the neighboring point in the interior directly to
the axis. Thisisthe most stable, and is recommended for most applications. This type of
extrapolation is selected by entering 0.0 in the "ext/proj” field. The second agorithm
extrapolates from three pointsin the interior by the use of a parabola. This method is
specially designed to try and reduce the tendency for the method to go unstable. This
method should be used only when an adjacent side boundary face does not intersect this
face normally, and the user wishes to make this extrapolation more sensitive to the
adjacent boundary shape. Thistype of extrapolation is selected by entering 1.0 in the
"ext/proj” field. The user can use a blending of the two methods by entering a number
between 0.0 and 1.0 in thisfield.

As faces collapsed to axes have many coincident points, control terms should not be
activated thereon.

The" collapsed-to-a-point” lines

Line Column | Datum

no.: nos: type: Description:

1 1-21 st " coll apsed-to-point-x="
1 22-33 f x-coordinate of the point

56

1 34-36 st toy="

1 37-48 f y-coordinate of the point

1 49-51 st t-z="

1 52-63 f z-coordinate of the point

1 64-69 st "-with-"

2 1-3 st .

2 4 C name of first index: "j" or "k"

2 5-10 st "-from-"

2 11-13 i starting value of first index

2 14-17 st "-to-"

2 18-20 i ending value of first index

2 21 st .

2 22 o name of second index: "k" or "|"

2 23-28 st "-from-"

2 28-31 i starting value of second index

2 32-35 st "-to-"

2 36-38 i ending value of second index
col | apsed-to-poi nt-x= 750. y= 0. -z= 0. -Wit h-

...j-fromO001-to-001-1-from 001-to-022
1234567890123456789012345678901234567890123456789012345678901234567890
1111111111222222222233333333334444444444555555555566666666667

Because all points on this section are coincident, control must not be activated here.

The" match-to-face" lines

Line Column Datum

no.: nos: type: Description:

1 1-14 st "match-to-face-"

1 15 i face number of other face

57

N NN N N N DN DN DN DN DN NN R R R R R R R R R R R R R g

16-22
23-24
25-30
31
32-37
38-40
41-44
45-47
48-53
54
55-60
61-63
64-67
68-70
1-9
10
11-16
17-19
20-23
24-26
27-32
33
34-39
40-42
43-46
47-49
50-64

"-block-"

block number of other face

"-this"

name of first index on thisface: "j" or "k"
"-from-"

starting value of first index on thisface
"o

ending value of first index on thisface
"-this"

name of second index on thisface: "k" or "I"
"-from-"

starting value of second index on this face
"o

ending value of second index on this face
"...-that-"

first index on that face: "j" or "k" or "I"
"-from-"

starting value of first index on that face
"o

ending value of first index on that face
"-that-"

second index on that face: "j" or "k" or "|"
"-from-"

starting value of second index on that face
"o

ending value of second index on that face

58

3 1-4 st "Lt

3 5-16 f X coordinate of theinitial point
3 17 st

3 18-29 f Y coordinate of theinitial point
3 30 st

3 31-42 f Z coordinate of theinitial point
3 43 st ")

mat ch-t o-face- 1- bl ock-02-t hi s-k-from 002-t0-031-this-|-from 001-to-022

...-that-k-from 002-to-031-that-I-from001-to0-022-initial-point=

. 3. , 5. , 2.7

1234567890123456789012345678901234567890123456789012345678901234567890
1111111111222222222233333333334444444444555555555566666666667

This boundary treatment allows this section of this face to be matched to (1) any other
section of thisface, or (2) any section of another face of this block, or (3) any section of
any face of any other block. That match will produce a block-to-block type boundary
where the surface floats with the solution of the grid-generation equations. Grid line
slope and spacing will be continuous across this surface. Note that this surface is double-
stored, i.e., it existsin memory identically as part of both coincident faces.

The range of indices defining "this" section must match with the range of indices defining
"that" section. Note that while the first index on "this' face must bej or k and its second
index must be k or |, any index could be the first index on "that" face and any other index
could be its second index. The starting and ending values on "this" face must be given in
increasing fashion, i.e., the ending values must be greater than the starting values. But
the corresponding indices on "that" face may run in whatever direction is appropriate. A
checking procedure has been introduced which checks the match-to-face data for
consistency. It prints warnings and error messages if appropriate. Note that the
information given here must essentially be given twice—once here in these input lines
describing "this" face of "this" block, and also in the input lines describing "that" face of
"that" block.

As with the plane-normal-to boundary treatment, thereis an initial point given here. All
the points on this face will beinitialized to this value, which looks very strange when
plotted. This condition will be corrected after the first iteration. Note that thisinitial
point requires all three coordinates.

The" freeze-at-restart” line

Line Column | Datum
no.: nos. type: Description:
1-18 st "freeze-at-restart-"
19 c first running index on this face

59

20-25 st "-from-"
26-28 i starting value of first running index
29-32 st "-to-"
33-35 i ending value of first running index

36 st e

37 C second running index on this face
38-43 st "-from-"
44-46 i starting value of second running index
47-50 st "-to-"
51-53 i ending value of second running index

freeze-at-restart-j-from 001-to-025-k-from 001-to-025
12345678901234567890123456789012345678901234567890123
11111111112222222222333333333344444444445555

This new boundary treatment may be used at the time of arestart, to freeze all the points
on aboundary surface. It isintended for use on sections which in previous runs were
floating -- on aplane, cylinder, ellipsoid, or axis.

FILE11-BODY DEFINITION ARRAYS

It was stated in the previous section that during its input phase 3SDGRAPE/AL reads
through filel0 until it encounters a "read-in-fixed" input line. At that point it suspends
reading from filel0 and begins reading the fixed surface points from filell. Whenitis
finished reading those X,Y,Z coordinates from filell it returnsto reading from filel0.
This cycle will be repeated as many times as there are "read-in-fixed" input lines. Thus
filell must contain X,Y,Z coordinates of as many fixed surfaces as there are "read-in-
fixed" input lines.

For each read-in-fixed-surface filell must contain:
» aheader line introducing the x-coordinates,
* the x-coordinates,
» aheader line introducing the y-coordinates,
* they-coordinates,
* aheader line introducing the z-coordinates, and
* the z-coordinates.

No intervening blank lines are allowed. Thiscycle of six things should be repeated for
each fixed surface.

60

The header lines introducing the coordinates are of the form:

Line | Column [Datum
no.: nos. type: Description:
1-9 st "complete-"
10 C name of coordinate: "x" or "y" or "z"
11-23 st "-for-section-"
24-25 [section number
26-34 st "-of-face-"
35 i face number
36-45 st "-of -block-"
46-47 [block number
48-49 st -
50-51 c field width, either "12" or "20"

conpl et e- x-for-section-01-of -face- 3-of - bl ock-01
conpl et e-x-for-section-01-of -face-3-of -bl ock-01-f12
conpl et e- x-for-section-01-of -face- 3-of - bl ock-01-f 20
123456789012345678901234567890123456789012345678901
111111111122222222223333333333444444444455

As described immediately below, the X,Y,Z, datain thisfile may bein either 6f12.0
format or 4f20.0 format. Blanksor "-f12" on the end of the first header line in the file
select 6f12.0;"-f20" on the end of the first header line in the file selects 4f20.0 The entire
file must use the same one of those two formats, so this selection appliesto the entirefile.
The contents of columns beyond 47 are optional on the first of these header linesin this
file, and ignored on all subsequent header linesin thisfile.

The actual X- or Y- or Z-coordinates begin on the line immediately following their
respective header line. Aswith all F formats used for input in Fortran, the placement of
decimal pointsin the input record overrides the placement of decimal points as indicated
on the format, and so the ".0" in the format isirrelevant. The selected format is repeated
for subsequent lines as many times as needed. The points should be ordered with the first
running subscript varying most rapidly asthe "inner loop," and the second running
subscript varying most slowly as the "outer loop."

FILE12- CELL HEIGHTSAND ANGLES AT BOUNDARY SURFACES

Whenever called for by the "normal=" and/or "angs=" fieldsin the "face" lines, the
program will suspend reading from filel0 and begin reading from filel2. When finished

61

reading those data for that face from filel2, it returnsto reading from filel0. The datain
filel2 appear in whatever order they are called for in the various "face" linesin filelO.

Line | Column [Datum
no.: nos. type: Description:
1-33 st "complete-normal -heights-for-face-"
34 i face number
35-44 st "-of-block-"
45-46 [block number
48-49 st -
50-51 c field width, either "12" or "20"

conpl et e- nor mal - hei ght s-for-face- 3- of - bl ock-08
conpl et e- nor nal - hei ghts-for-face-3-of - bl ock-08-f12
conpl et e- nor nal - hei ght s-for-face- 3-of - bl ock-08-f20
12345678901234567890123456789012345678901234567890
11111111112222222222333333333344444444445

Line Column | Datum o
no.: nos. type: Description:
1-30 st "compl ete-angles-wrt-subscript-"
31 [running subscript number, either 1 or 2
32-41 st "-for-face-"
42 [face number
43-52 st "-of-block-"
53-54 [block number
55-56 st "-f"
57-58 o field width, either "12" or "20"

62

conpl et e-angl es-wt-subscript-1-for-face-3-of - bl ock-08
conpl et e-angl es-wt -subscri pt-2-for-face-3-of - bl ock-08-f12
conpl et e-angl es-wt -subscri pt-2-for-face- 3-of - bl ock-08-f20
1234567890123456789012345678901234567890123456789012345678
1111111111222222222233333333334444444444555555555

The "normal-heights" header lineis followed by the requested cell heights, in the user's
own units asused inthe X,Y,Z. They are ordered as are the X,Y,Z in filell, with the
first running subscript varying most rapidly as the "inner loop," and the second running
subscript varying most slowly asthe "outer loop." The format is either 6f12.0 or 4f20.0,
selected just asin filell.

The "angles' header line isfollowed by the requested angles, in degrees, with 90.0
meaning perpendicular, angles less than 90.0 tilting toward the end of the indicated
surface coordinate with lower running index values, and angles more than 90.0 tilting
toward the end of the indicated surface coordinate with higher running index values.
"Wrt" stands for "with respect to."

FILE1I3S—-TO READ IN A GRID AND SMOOTH IT

This program has the ability to read in a grid generated elsewhere, smooth it, and write it
out again. With the graphical version of this program, such agrid could beread in,
looked at, and then smoothed or |eft un-altered.

Filel3 isthelogical unit used for reading in thisgrid. The name of thisfileisread from
filel9, described in a subsequent section. The grid file itself, filel3, may be of any of the
same forms in which this program writes filel4, its output grid. Theseforms are
described above, in the section called "the filename-14" line. Thisfile to be read should
have been written by code being functionally equivalent to the pseudo-code shown in that
section.

FILE16 —CONTROL SCALARSFOR RE-START

Aswas said above, SDGRAPE/AL has arestart capability. The user can let the grid
generator run awhile, examine the resulting grid, change some things, and then run it
some more. The code allows the user to change many things at restart. The number of
blocks, the dimension sizes of the blocks, the "handedness” of the blocks, the data per-
taining to Cartesian vs. spherical topology, and whether or not control is activated on
each face are the only things which cannot be changed. This meansthat all the other
parameters originally given in filel0 may be modified, the body shape givenin filell or
the distribution of points on it may be modified, etc.

If arun of 3DGRAPE/AL isto berestarted, the first requirement isthat arestart file be
written as filel5 by the first run; see the "write-for-restart” input linein filel0, described
above. For therestart run, thissamefileisread in asfilel?.

As described above, in the section called, "THE FIRST TWO LINES," the first thing the
program does in any execution isto inquire about what type of run thisis. For arestart
the user should enter "re-start”. In thisrestart case, the program reads afile, using unit
16, which bears great resemblance to afilel0. Infact, most users create their filel6 by
copying their filel0 and then suitably modifying it. The program will ask what filename
isto be used for the filel6 input data. The user should enter that name.

63

The following table liststhe input linesin filel6. Whereit says"just likein filel0" it
does not mean that the line in filelé must be identical to the corresponding line in the
filelO used in thefirst run for this grid; it means that the user has all the optionsin
making up this line which are available for thislinein any filel0. However, in practice,
most users will cause most of these lines to be the same as the corresponding line in their

file10.

Line designation:

Description:

The "run-comment” lines

Just like in filelO.

The "filename-17-input” line

Thisisanew type of line, present only in filel6. It smply
tells the program what filename is used for the restart file,
written as filel5 by the previous run. Itsformat is:

filenanme-17-input=ny_restart file
12345678901234567890123456789012345
11111111112222222222333333

The "heading" line

Thisis a shortened version of the "number-of-blocks" line.

headi ng=kdf

headi ng=000

headi ng=054

headi ng=kdf - fi |l enane- 18- vi ews=ny_pi cture_dat a

123456789012345678901234567890123456789012345
111111111122222222223333333333444444

The"iterations' lines

Just like in filel0, except that:

* Inrestart runsthe RHS types "S& S-initzero" and
"S& S-init-T&M" make no sense, becausein a
restart the RHS are not being initialized.

* Inrestart runs coarse parts are forbidden

The "filename-11" line

Just likein filelO.

The "filename-14" line

Just likein filelO.

The "write-for-restart” line

Just likein filel0. However, you should realize that you
can make multiple, subsequent restart runs if you want. |f
you don't want to do another restart after this one, be sure
tosay "no". Butif you do, be careful with the filenames.
In that case, make sure that you change the name of the
restart file to be created on this run, so that you don't
overstore the restart file you just read for this run.

The "omegpar"” line

Just likein filelO.

The "quality-check" line

Just likein filelO.

The "block-comment” line

Just likein filelO.

The "dimension” line

This line must be removed. If anything on it changed,
chaos would result.

The "handedness' line

This line must be removed. If anything on it changed,
chaos would resullt.

The "polar-axis' line

Thisline must be removed. If anything on it changed,
chaos would resullt.

The "freezeblock" line Just like in filelO.

The"face" line Just like in filelO.

The "norm/sect” line Just likein filelO.

The first type of "edges” line | Just likein filel0.

The second type of "edges' | Just likein filelO.
line

The "read-in-fixed" line Just likein filelO.

The "plane-normal-to" lines | Just likein filel0.

The "cylinder-about" lines | Just likein filel0.

The"dlipsoid" line Just likein filelO.
The "collapsed-to-an-axis' | Just like in filel0.
lines
The "collapsed-to-a-point” | Just likein filel0.
lines

The "match-to-face" lines Just likein filelO.

The "freeze-at-restart” line | Thisoption is available at restart, although it is not
available on afirst run.

Table8. List of Input LinesUsed in Filel6 Input

FILE18 —INDICES OF SURFACESTO BE VIEWED

The batch (non-graphical) version of this code ignoresfilel8. The graphical version,
however, reads filel8 to find exactly what the user wants to look at when viewing the
grid. The graphical version of the code allows the user to choose between as many as
eight different views of the grid. Asused here, the term "view" means a set of coordinate
surfaces (over which one index is fixed, and the other two vary) or portions thereof.
These coordinate surfaces can be taken from any or all of the blocks in a multiple-block
grid. Each surface can be colored with any of eight colors. The background is black,
unless all the surfaces are chosen to be black, in which case the background iswhite. The
number of surfaces per view islimited by a parameter set in params.h. Asdelivered, this
valueis 50.

All of the datain filel8 are read in 8i5 format. Thereisone "group” of datafor each
view, with the groups appearing in sequence. Each group beginswith aline having on it
one number: the number of surfacesin thisview:

Line Column | Datum
no.: nos. type: Description:
1-5 i number of surfacesin this view.
3

1234567890123456789012345678901234567890
1111111111222222222233333333334

65

In this example, the line, the first line of a group, says that the group consists of three grid
surfaces.

The remainder of the group consists of one line of datafor each surface in the view,
defining the surface:

Line | Column [Datum
no.: nos. type: Description:
1-5 [Block number of this surface
6-10 i Minimum value of thefirst index, j, in this surface
11-15 i Maximum value of the first index, |, in this surface
16-20 [Minimum value of the second index, k, in this surface
21-25 [Maximum value of the second index, k, in this surface
26-30 [Minimum value of the third index, |, in this surface
31-35 [Maximum value of the third index, I, in this surface
36-40 [Color code for this surface, chosen from the Color Codes
table, shown below

1 1 50 1 1 1 40 3

1 1 50 30 30 1 40 3

1 25 25 1 30 1 40 5
1234567890123456789012345678901234567890
1111111111222222222233333333334

Suppose the example lines, above, were used for viewing a one-block grid having index
limits of 50 x 30 x 40. Then thefirst line describes ayellow surface where k is fixed at
its minimum value, 1, with j and k running over their full ranges. The second line
describes another yellow surface where k isfixed at its maximum value, 30, with j and k
running over their full ranges. The third line describes another surface, magentain color,
where | isfixed at an intermediate value of 25, with k and | running over their full ranges.

Since each line of data after the first in each group represents a grid surface, and agrid
surface by definition has one index fixed, that line of data should have one minimum
index value equal to the maximum value of that sameindex. Seek in thefirst and second
lines, and j in the third line. Thisrule can be violated at the user's discretion (e.g., for
drawing both upper and lower surfaces of awing), but the user should realize that draw-
ing solid figures (as opposed to surfaces) tends to produce an impenetrable blob, and
takes the computer along time to draw.

In amultiple-block grid surfaces from multiple blocks can be mixed inaview (in a
group).

66

Blank lines may appear in this file preceding the lines which give the number of surfaces
ineach view. |.E., blank lines may appear between the groups of data. Using them
enhances readability of the file. Blank lines may not appear within the groups of data.

Thisfileisread until terminated by:
* having read eight views (eight groups of data), or
* encountering an end of file, or

» reading anegative number for the number of surfacesin aview. This allows other
data, not currently in use, to be stored in the same file after the terminating nega-
tive number. Users have found this convenient.

Color code: Resulting color:
black
red
green
yellow
blue
magenta
cyan
white

N[OOI WIN| RO

Table9. Color Codes

FILE19—-CONTROL SCALARSFOR SMOOTHING A GRID

The control scalarsfor reading in agrid to be smoothed are read from file 19, and are
similar to the dataread from files 10 and 16.

Line Column | Datum
no.: nos. type: Description:
1-20 st "run-comment "
21-70 C free-field comment describing thisrun
r un- conment Bl ah, bl ah, bl ah.
r un- conment VWhat this data is all about.

1234567890123456789012345678901234567890123456789012345678901234567890
1111111111222222222233333333334444444444555555555566666666667

These two lines arejust like in filel0, above.

67

Line | Column [Datum

no.: nos. type: Description:

1 1-11 st "iterations="

1 12-14 i the number of iterationsin this part

1 15-23 st "-control="

1 24-25 C overriding global switch on control, either "ye" or "no"

iterati ons=100-control =no
i terations=100-control =ye
1234567890123456789012345

1111111111222222

The data on this line are the same as described in filelO.

Line Column | Datum o
no.: nos. type: Description:
1-23 st “filename-13-grid-input="
24-38 n filename for input on unit 13
39-44 st "-form="
45-51 c "3dgrape” or "plot3ds" or "plot3dm™ or "charact"

filenane-13-grid-input=my_bunmpy _grid -form=3dgrape
fil enane-13-grid-input=what_a_ness - f or nepl ot 3ds
filenane-13-grid-input=l_shoul d _snoot h-formepl ot 3dm
filenane-13-grid-input=this_rascal - f or mechar act
123456789012345678901234567890123456789012345678901

111111111122222222223333333333444444444455

The data on this line are the same as described in filelO.

Line Column | Datum
no.: nos: type: Description:
1-24 st "filename-14-grid-ouput="

68

25-39 n filename for output on unit 14
40-45 st "-form="

46-52 C "3dgrape” or "plot3ds" or "plot3dm™ or "charact"

fil enane- 14-gri d-out put=ny_snmooth_grid -form=3dgrape
fil enane- 14-gri d- out put =a_j oy_t o_behol d- f or m=pl ot 3ds
fil enane- 14-gri d- out put =what _a_gr eat - f or mepl ot 3dm
fil enane- 14-grid-out put=programthis_is-formecharact
1234567890123456789012345678901234567890123456789012

1111111111222222222233333333334444444444555

The data on this line are the same as described in filelO.

Line Column | Datum o
no.: nos: type: Description:
1-14 st "quality-check="
15-16 C "ye" or "no"
17-35 st "-filename-18-views="
36-50 n name of file for input asfilel8

qgual i ty-check=ye

qual i ty-check=no-fil enanme- 18-vi ews=ny_pi cture_data

12345678901234567890123456789012345678901234567890
11111111112222222222333333333344444444445

The data on this line are the same as described in filelO.

OUTPUT

There are two principal forms of output from this program. The first isthe "printout” file,
i.e., the text which iswritten to standard output. It consists primarily of

» alisting of the control scalar input (filel0 or filel6 or filel9), with some com-
ments added about what the program is doing,

» atrace of theiteration count as the program runs,
» aconvergence history for each block, and
e quality-check data, if caled for.

69

The other principal output isfileld, containing the finished grid. The various forms of
thisfile are described in the section on "The filename-14" line, above.

The program aso, if called for, makes arestart file (filel5) to be read (asfilel7) by the
program itself in the case of arestart. Since the user has no cause to examine this
unformatted file, its format is not documented here.

One might also consider the pictures on the screen drawn by the graphical version of this
code to be output. Furthermore, the plotting package can write screen-dump files of grid
pictures named plotit.01.rgb, plotit.02.rgb, etc., and screen-dump files of convergence
history plots named convhist.01, convhist.02, etc.

RUNNING THE GRAPHICAL USER INTERFACE

Aswas said above, when the program is run on a Silicon Graphics IRIS workstation it
can be linked in two different versions. Oneisbatch and the other is with graphics. This
section will describe running the code in its graphics version.

A sample of the Graphical User Interface can be seen in thefirst grid figure, Figure 3a,
appearing in the following section on the example cases. Those figures are reduced to
grayscale in this manual, but liberal use is made of color in the actual program.

When the graphics opens there will be four windows on the screen. The big square one
on the left displaysthe grid. On the right are three small windows.

The top small window istitled TRANSFORMS. The user should realize that although no
axes are actually drawn, conceptually there are two different sets of axes here. One setis
the body's axes, which move with the object. If the grid is about an airplane those body
axes would be the pitch, roll, and yaw axes. The other set of axesis the screen axes,
which are fixed. The screen axes go right and left, up and down, and in and out (whichis
zooming). Thiswindow's buttons give the user the ability to rotate the plotted object
about the body's axes, trandate it along those axes, and translate it along the screen's
axes.

Once the use of the mouse and its buttons is understood, therest iseasy. Inthe
TRANSFORM S window the user first uses the middle mouse button to select what
operation isto be performed, i.e., to select which of the nine transformsisto be currently
active. To activate a certain transform, place the mouse cursor over that screen button
and click the middle mouse button. That screen button will then light up, signifying that
that transformis active.

Then, with the desired transform selected, push the right and left mouse buttons to
operate it. The right mouse button causes the transform to operate one way, and the left
mouse button causes it to operate the other way. These transforms work only when the
mouse cursor is somewhere in this window.

Thereis adefault transform speed which is relative to the physical size of the object. But
that speed isn't alwaysright. And so the user can vary the speeds of the transforms, a
different speed for each. Notice the little green triangles in each transform button. They
indicate the speed of that transform -- faster to the right and slower to the left. The user
moves them by moving the mouse to the right or left while actually doing the transform,
i.e., by sliding the mouse to the right or left while actually depressing either the right or
left mouse button.

70

The middle small window istitled CONTROLS. It offersvariety of different control
actions. In thiswindow, and in the one below it, the middle mouse button selects what
the user wants to do, and the right and left mouse buttons don't do anything.

The screen buttons in the CONTROL S window are described below:

Button:

Function:

GO

The program will automatically pause for in-depth graphical inspection
at the start and at the end of the run. In addition, as described below,
the user can pause the iterative process whenever he wantsto. When
finished inspecting the user should hit this GO button to resume
iterating. Note that here, and throughout the other buttons, whenever a
button is not available it will be dimmed. For example, after pushing
GO the only button available is PAUSE.

PAUSE

The user can pause the program anytime during the iterative process.
Just press and hold this button until the current iteration is finished.

EXIT

What it says. Thereisa"do you really want to do this?" trap.

RESET

It is possible, after many transform operations, to get lost. The user
either can't tell where heisinthe grid, or the entire picture is off of the
screen and can't be found. This button resets the orientation of the
object to what it was at the start.

FAST / SLOW

As described above, there is a speed setting for each of the transforms,
with the current speed settingsillustrated by the little green trianglesin
the TRANSFORMS window. This button cause all the trianglesto
toggle together to either theright -- FAST -- or to the extreme left --
SLOW.

PERS/ ORTH

Toggle between perspective and orthographic projections. Some
zooming may be required to make the object the same size after
switching projections.

Z-BUFFER

This invokes hidden-surface removal. Just push the button. The
program re-draws the current picture in hidden surface mode. Then hit
anywhere in the CONTROL S window to get it back into normal mode.

PIXSAVE

This button causes the program to call the SGI utility "scrsave” to
dump araster image of the screen to afile of the RGB type. Thisis
useful for making pictures and viewgraphs. Beware that in every run it
names the files "plotit.01.rgb", "plotit.02.rgh", etc. Therefore, if there
are files thusly named remaining from an earlier run they will be
overwritten.

CONV HIST

This button causes the GUI to switch from plotting the grid to plotting
convergence histories.

Table 10. GUI Control Buttons

When in CONV HIST mode, for each block there is either one or two convergence
history plots: aplot showing maximum and average point movement vs. iteration count,
and if S& S RHS terms are used a plot showing maximum absolute value of the RHS
terms and maximum correction of RHS terms. These one or two plots are repeated for
each block, making alist of convergence history plots. The convergence history plot

71

window shows, along with a convergence history plot, four buttons. Pushing them has
the following effects:

Button: Function:
NEXT The next plot in the list will be shown.
PREVIOUS The previous plot in the list will be shown.
PIXSAVE A screen dump to afile will be performed.
RETURN Return to grid plotting mode.

Table 11. Screen Buttonsin CONV HIST Mode

By hitting one of the buttonsin the bottom small window titled SELECT VIEWS with
the middle mouse button the user selects between the different views which were pre-
defined in the filel8 viewsfile.

EXAMPLE CASES

Three basic example cases are included, plus two variations on the first, for atotal of five
cases. They illustrate the use of many of the features of the code. Following isatable
which lists the files relating to the example cases. They are all ASCII text. Thistable
could be thought of as a continuation of Table 3, above.

File Sub- File name: Datain thisfile:
number: | directory:
160 box boxall.f10 Control scalars for the basic box case
161 box boxall.f11 X,Y ,Z coordinates of points on the sides of the
box, having sinusoidal bumps. Used for all
the box cases.
162 box boxall.f18 Indices defining the grid surfaces to be viewed

when any of the box cases arerunin the
graphical version.

163 box boxall.out Output file (printout file) for the basic box
case
164 box smooth.f19 Control scalarsto read in the basic box case

and smooth it alittle. Thisdatafileisincluded
on the tape, but thisexcerciseis not listed in
this manual as atest case.

165 wing wing.f10 Control scalars for the wing with flat-plate
extension case
166 wing wing.f11 X,Y,Z coordinates of points on the wing with

flat-plate extension case

72

167 wing wing.f18 Indices defining the grid surfaces to be viewed
when the wing with flat-plate extension caseis
run in the graphical version

168 wing wing.out Output file (printout file) for the wing with
flat-plate extension case

169 hcc hemcylcon.f10 | Control scalars for starting the hemisphere-
cylinder-cone case

170 hcc hemcylcon.f11 | X,Y,Z coordinates of points on the
hemisphere-cylinder-cone body

171 hcc hemcylcon.f12 | Cell heights at each body point in block 2 for
the hemisphere-cylinder-cone case

172 hcc hemcylcon.f18 | Indices defining the grid surfaces to be viewed
when the hemisphere-cylinder-cone caseis run
in the graphical version

173 hcc hemcylcon.f16 | Control scalars for the re-starting the
hemisphere-cylinder-cone case

174 hcc hemcylcon.res. | Output file (printout file) for the hemisphere-

out cylinder-cone case, after restart

175 box boxtm.f10 Control scalarsfor thefirst variation on the
box case -- using Thomas & Middlecoff
clustering terms

176 box boxtm.out Output file (printout file) for the first variation
on the box case -- using Thomas & Middlecoff
clustering terms

177 box boxopt.f10 Control scalars for the second variation on the
box case -- using locally optimal relaxation
parameter (Q)

178 box boxopt.out Output file (printout file) for the second

variation on the box case -- using locally
optimal relaxation parameter (Q)

Table 12. Data Filesfor Example Cases (Files 160 - 178)

THE BASIC BOX CASE

As said above, this case is a box with edges conforming to what would be a cube, but
with sinusoidal bumps on all six sides. The number of cycles comprising the bumps
varies between different directions and different faces. The amplitudes of the bumps are
large (approx. £ 0.18 times the length of a side) in the centers of the faces, and reduced to
near zero at the edges. The distribution of points on the faces is consistent with the clus-
tering requested in the interior.

A look at boxall.f10 will reveal four sets of "iterations' lines. On them it can be seen that
we are using the coarse/fine technique. Thisis made possible by the fact that the

73

numbers of pointsin each direction (see the "dimension” line), 46, 49, and 52, are all of
the form 3n+1 (for different values of integer n). Thisrequires prior planning.

The "iterations" lines also reveal the basic recommended "game plan” for running the
code:

+ afew coarseiterations with control turned off to smooth out the sometimes odd
initial conditions, followed by

* enough coarse iterations with control turned on to more or less converge the
coarse case, followed by

» enough fineiterations to finally converge the case. Thislast stepisfirst per-
formed with control terms turned off (not shown) to verify the correctness of the
boundary treatment by generating an uncontrolled grid, and then with control
terms turned on (as shown) to achieve the desired control of cell size and skew-
ness near boundaries.

A plot of theiteration history is seen in Figure 2a. Two functions are shown on this
graph. Thefirst is Maxmove, the amount that the point which moves the farthest between
successive iterations moves. The other function is Avemove, the average amount that all
the points move between successive iterations. It should be emphasized that these
functions are plotted in the user's own units. The box in this example is nominally a cube
one unit on aside, and in reference to that we see that the Maxmove is converged to

about 0.2* 1076 units and Avemoveis converged to about 0.25*10-7 units. Such a
convergence history, with those functions starting high, doing some wiggling, and then
being reduced monotonically by several orders of magnitude, istypical of a properly
converged solution. If these two functions don't eventually decay by several orders of
magnitude, then convergence has not been achieved, and the resulting grid will probably
not conform to the user's requirements. Most usersin most cases will not really need
such a high degree of convergence as shown here, and so may consider reducing the
number of iterations. The small wiggles at the very end of the Maxmove plot indicate
that the solution has been converged to the limit imposed by round-off error. All the
cases shown here were run on a Silicon Graphics Indigo2 R4400 workstation, a machine
which does 32-bit floating-point arithmetic.

This case has also been run on aCRAY C-90, where the resulting convergence history is
somewhat different but has the same general trends. It should be noted, however, that in
the vectorized CRAY version the difference stencil used in the Point-SOR solver is
different. At some of the points at which new datais used in the serial version, old data
must be used in the vectorized CRAY version. Thisis necessary to avoid data
dependency problems. Although vectorization on the CRAY greatly reduces the time per
iteration, the modified difference stencil tends to increase the number of itertions
required.

Figure 2b isaplot of two different functions, plotted against the same horizontal scale,
for the same case. Oneis Pgrmax, the maximum of the absolute values of the S& S-type
RHS terms over all boundary surfaces where control is activated. This function should,
as seen here, rise to some large value and then level off. Thisleveling-off indicates that
the S& S-type RHS terms, which are found iteratively, have been converged. The other
function plotted here, Pgrcor, is the maximum of the absolute values of the changein (or
correction of) the S& S-type RHS terms over all boundary surfaces where control is
activated. In not-too-precise terms, Pgrcor could be thought of as the derivitive of
Pgrmax. Thus Pgrcor tending toward zero aso indicates that the S& S-type RHS terms
have converged.

74

Figure 3a shows the | eft-hand boundary surface, with three more-or-less horizontal
interior grid surfaces, in the finished grid. Thisiswhat gridslook like when run in the
graphics version of the code, except that here the Figure is reduced to grayscale while the
acutal screenisin color. The body-conforming nature of the grid is shown, asis the suc-
cessful imposition of asmall and uniform cell height and near-orthogonality near he
boundary surfaces. Elliptic methods, of which thisis one, are known for generating very
smooth grids, and that is seen here.

Figure 3b shows two intersecting interior grid surfaces in the same grid, at asimilar
orientation.

Another look at the filel0 for this case will show that omega has been raised from its
default value of 0.7 to avalue of 1.0 for thiscase. The user may wish to experiment with
raising that parameter further to achieve faster convergence. A value of 1.3 or 1.4 should
converge, and it should cause the number of required iterations to be reduced by half.

75

Figure 2. Convergence Historiesfor Basic Box Case.

=| PLOTIT

L
[A

BOX CASE. $&S RHS TERMS. FIXED OMEGA. -- Block 1

- LEGEND -

MAXMOVE
AVEMOVE

ITERATIONS

Figure 2a.

Point M ovement Functions.

76

|0

=| pLoTIT

S5&S RHS TERMS. FIXED OMEGA. -- Block 1

BOX CASE.

- LEGEND -
PQRMAX
P8RCOR

Za

|
|
|
|
I
|
|
|
|
a
|
|
|
|
I
|
|
|
a4
I
|
|
|
|
|

1000

00

[
ITERATIONS

200

1200

800

400

Figure2b. Control Term Functions.

77

Figure 3. Wavey-Sided Box Grid.

S —

ful =.] GRID DRAWN BY 3DGRAPEIAL

\\‘\“I
AL
R

I
S)
i e)
e |
il s [l’lljﬂ.“n””-
o

l

ROTATE-X
ROTATE-Y
ROTATE-Z

TRANS-X

SIDE-SIDE
i

Suitch to SLOW transforms

PIXSAVE
CONU HIST

Figure 3a. Exterior Surface With ThreelInterior Surfaces
Interface (GUI) Also Shown.

78

. Graphical User

—_—

=-I GRID DRAWN BY 3DGRAPEAL

=| TRANSFORMS

il

e e e

il
e e o

ROTATE-X

ROTATE-Y

ROTATE-Z
Y

'y

MMXD <0OW —comD

i

SIDE-SIDE
i
UP-DOKN
i

ZooM

=| CONTROLS

Dt
=

e e -.__-.1___\
e S e
== _-—-\-"‘_‘:‘-‘-“‘i‘-‘-‘\‘;&‘}%‘\ PERS/ORTH
e =
== = _
S 2-BUFFER

PIXSAUVE

CONU HIST

Figure 3b. Two Intersecting Interior Surfaces.

THE WING WITH FLAT PLATE EXTENSION CASE

One of the principal new features of the "Ames-Langley Technology Upgrade" isan
improved ability to bend a grid across a sharp corner in a boundary surface. The ultimate
example of that iswrapping agrid across the edge of aflat plate. The need to do that
arises more often than one might imagine, with this case being an example. A C-type
grid iswrapped about the leading edge of awing, and then for topological purposes that
wing is extended in the spanwise direction as aflat plate.

Figure 4a shows the wing, having aNACA 0012 section, its extension in the spanwise
direction, and another planar extension in the wake region. All this constitutes the body
boundary surface. It isshown from the root end of the wing looking toward the tip.

Figure 4b isfrom adifferent point of view -- from the tip end looking back toward the
root. Theflat plate extension in the spanwise direction is clearly shown, along with
portions of two grid surfaces wrapping around the wing and its extension. An extreme
close-up of aninterior grid surface wrapping around the leading-edge of the flat plate
extension is shown in Figure 4c.

The convergence history for this case is shown in Figures 5a and 5b.

80

Figure4. Wing With Flat-Plate Extension Grid.

I —

=| GARID DRAWN BY 3DGBAPEAL =| TRANSFORMS

ROTATE-X

ROTATE-Y

ROTATE-Z

MMXD <00m —-SOmD

SIDE-SIDE

UP-DOMWN

mzorD
YmMXD ZMMIOV

=| CONTROLS

Suitch to SLOW transforms

FAST/SLOW

PERS/ORTH

PIXSAVE
CONU HIST

Figure4a. Body, Consisting of Wing With Flat-Plate Extension in Spanwise
Direction and Planar Extension in Streamwise Direction.

81

e e—
=-I GRID DRAWN BY 3DGRAPEAL a =| TRANSFORMS

a
ROTATE-X
Y

ROTATE-Y

ROTATE-Z
d

'y

L

'u'":
l,"‘l:',"l},,
I
|
,ln
|

l
|

,l
':"
)
':
|
l
|

|
|
|
:‘.
|

MMXD <0OW —comD

S T LT
e
AT ST i
e i S A A A A Gy L
T T T

777 7

i

=
i
i
i
il
i
\

]

Z ///////,'I;”"’ 55 SIDE-SIDE

A
UP-DOUN
Iy

-A
J
\]
a
)
!

]

-
[
A
ANNR

-
=
-

o=
-+
[]

=| CONTROLS

{7
g
SRS
- Z-BUFFER
u

==
=
]
=
[/
o
i
5

i
i
[T
i
l’

\;
%f”
J
§///m
\///m
\//lll
i
i

7]

Figure4b. Wing and Portions of Two Interior Surfaces Wrapping Around.

82

e
H|= GAID DRAWN BY 3DGRAPEIAL a = TRANSFORMS

ROTATE-X

ROTATE-Y

ROTATE-Z

FAST/SLOW

PERS/ORTH

Z-BUFFER

Figure4c. Close-Up of Interior Surface Wrapping Around L eading-Edge of
Flat-Plane Extension

83

Figure5. Convergence Historiesfor Wing and Flat-Plate Extension Case.

=| PLOTIT

C-H-TYPE GRID ABOUT WING & FLAT-PLATE EXTENSION. -- Block 1

MAXMOVE
AVEMOVE

- LEGEND -

(IR
W 44—

e

ey

. — o — —
“wud

-

B A e e |

[l R e e s |

e e e e ——— ==

()JIOO

ITERATIONS

Figure5a. Point Movement Functions.

=| PLOTIT [-10

C-H-TYPE GRID ABOUT WING & FLAT-PLATE EXTENSION. -- Block 1

[u—y
-

w

[REPTY, -3

1
10 q%

[/ - - LEGEND - -
PQRMAX ;=
PQRCOR (=

ITERATIONS

Figure5b. Control Term Functions.

85

THE HEMISPHERE-CYLINDER-CONE CASE

The value of the hemisphere-cylinder-cone caseisthat it illustrates almost all possible
boundary treatments. It isalso a multiple-block case, and the freezeblock feature is used.
We have aso chosen to illustrate reading cell heights from filel2.

The body is shown in Figure 6a, with an axis trailing out the back. Many grids, including
most aircraft grids, have planar symmetry and so only one half of the configuration is
actually used. That isthe case here; if we define the hemisphere as the front (or nose) of
the configuration, then the left half is missing and only the right half is gridded.

This case also illustrates the use of spherical topology in the block about the
hemispherical nose. Spherical topology should be used whenever the grid has a spherical
axis, such asis seen ahead of the nosein this case. If the use of spherical topology is
called for by the actual problem being gridded, and spherical topology is not chosen in
this code, decidedly odd behavior can result on and near the axis. Note that in this case it
was found necessary to reverse the handedness of this block because of the use of spheri-
cal topology, as described in a previous section on the "handedness’ input data line.

Some of the interior grid surfaces are shown in Figure 6b.

Returning to the filelO for this case, the "write-for-restart” line shows that arestart file
was written and arestart was performed. The reason for thisistwo-fold. Firgt, it ssmply
illustrates the code's restart capability. Secondly, a small problem was found in block 3,
about the axis behind the body. As the code continued to iterate points moved closer and
closer to the X-axis, until their coordinatesin the Y - and Z-directions approached round-
off. This can cause problems, so we employed the ssimple artifice of ceasing to iterate on
block 3 after 500 iterations (out of atotal of 2,000). Theinput parameter "freezeblock="
isset to "ye" for block 3 in the restart input data file hemcylcon.f16.

The restart was performed after 500 iterations. Plots of convergence histories for blocks
1 and 2, shown in Figures 7athrough 7d, show a small disruption at that point, from
which the code quickly recovers. In other cases testers have seen no disruption of the
convergence hisory at arestart. Numerical values for the convergence histories for
blocks 1 and 2, in their entirety from start to finish, are shown on the supplied output file,
hemcylcon.res.out, taken from the restart run. The convergence history for block 3,
though shown in Figure 7e, appears in numeric form only on the output file resulting
from the starting run which is not included on the program distribution tape. Note that
thereis no plot of the convergence of control termsfor block 3, because all boundary sur-
facesin block 3 have control turned off.

86

Figure 6. Hemisphere-Cylinder-Cone Grid.

—

H|= GRID DRAWN BY 3DGRAPEIAL

= JRANSFORMS

ROTATE-X

ROTATE-Y

ROTATE-Z

TRANS-X

VMXD <00W —CoWD

SIDE-SIDE

UP-DOWN

“wmMxD ZMmoon

Figure 6a. Body With Trailing Axis.

87

—

M =-I GRID DRAWN BY 3DGRAPEAL a =| TRANSFORMS

ROTATE-X

ROTATE-Y

ROTATE-Z

SIDE-SIDE

“ UP-DOWN

Ol
e B a4 ¥ SRR
AT TS \\«“.““

T s
i l\\ll

s
iy aaey,

ey, VRN
e
LT

i;'
Sl 1
it

e

7

i
s
SRS

9
‘\\’X
SR

{{{
A e¥
i
\‘\\&\\
&
o
S

T
‘\\

S

(R
5
o

R

%
\
-

oy
T
s

i \.b
“‘\?

Figure6b. Body, Symmetry Plane, Body, and Selected Interior Surfaces.

88

Figure7. Convergence Historiesfor Hemisphere-Cylinder-Cone Case.

10

=| PLOTIT

HEMISPHERE-CYLINDER-CONE RESTART CASE. -- Block 1

- LEGEND -

MAXMOYE
AVEMOVE

wn
TMITITC

——— - —d - - - -

e i C

1---—--4+-----F - - ===

2000

800

1

1400

1000

6‘00

200

_5
0.

1

1600

1200

800

4400

ITERATIONS

Figure 7a. Point Movement Functionsfor Block 1.

89

|0

=| pLoTIT

HEMISPHERE-CYLINDER-CONE RESTART CASE. -- Block 1

W .
|
s Ve
=3 B
Ix- |
7z o ”
[R I
|
CHE I AR . .
R |
1
I 1 | =
1 | =
1 L_=
I —
|
:" ”
IL_ J,r\‘
1 |
1 |
1 | -
I.mli L L e e L 4”.| Im
e |
1 |
" x
! T
i T
| :
! [
| e
O T
! [
1 1
o i
a_ 1 I
1 1
1 1
1 1
1 1
1 1 W
+ ++-e
1 |
1 |
1 |
| !
I T CO
I

10.

800

400

ITERATIONS

Figure7b. Control Term Functionsfor Block 1.

90

|0

=| pLoTIT

HEMISPHERE-CYLINDER-CONE RESTART CASE. -- Block 2

- LEGEND -
MAXMOVE
AVEMOVE

[I

wer
= mIT I

e e e e e e e
i e B e e e I

i
T OTHTIT

4 _po

60

1I

000

0

200

800

400

ITERATIONS

Figure 7c. Point Movement Functionsfor Block 2.

91

|0

=| pLoTIT

HEMISPHERE-CYLINDER-CONE RESTART CASE. -- Block 2

- LEGEND -

1000

600

200

800

400

ITERATIONS

Figure7d. Control Term Functionsfor Block 2.

92

|0

=| pLoTIT

HEMISPHERE-CYLINDER-CONE CASE. -- Block 3

- LEGEND -

MAXMOVE
AVEMOVE

500

300

100

400

200

ITERATIONS

Figure 7e. Point Movement Functionsfor Block 3.

93

FIRST VARIATION ON THE BASIC BOX CASE --THOMAS & MIDDLECOFF
CLUSTERING TERMS

The basic box case used Steger and Sorenson clustering terms. This case uses both S& S
terms and Thomas and Middlecoff terms, with blending between the two. Seethe
"iterations" linesin boxtm.f10. The differences between the grids are difficult to seein
plots such as appear in this manual, so no attempt is made to illustrate them. The
interested user should generate his own results and look closely at them. For some cases
grids generated this way are superior to those generated with S& S terms alone. Such
things are highly case-dependent, so the user will have to experiment and come to his
own conclusions.

The convergence history for this case is presented in Figures 8aand 8b. The S& SRHS
terms for this case shown in Figure 8b converge in about 350 iterations, as opposed to
425 iterations for the basic box case shown in Figure 2b. The point movement functions
shown in Figure 8a converge in about 650 iterations for this case, as opposed to about
1,000 iterations for the basic box case shown in Figure 2a.

94

Figure 8. Convergence Historiesfor Box Case With Thomas & Middlecoff RHS

Terms,
= "promr [~ 10
| BOX CASE. BLENDS&S&T&M RHS TYPE. FIXED OMEGA. -- Block 1
-1

10. 3-cc=c=zsz=zzzzz=zszz=z=s=z=s==s==s==s=z==z=z=zz:=:=:¢ - LEGEND - =

r i —— MAXMOVE (=

—_—) AVEMOYE [~
\
\
\

h ITERATIONS

Figure8a. Point Movement Functions.

95

|0

=| pLoTIT

BOX CASE. BLENDS&S&T&M RHS TYPE. FIXED OMEGA. -- Block 1

1T

o I e

T
e e e e e e

P

100

ITERATIONS

Figure8b. Control Term Functions.

96

SECOND VARIATION ON THE BASIC BOX CASE -- LOCALLY OPTIMUM
RELAXATION PARAMETER (Q)

This second variation on the basic box case is one which uses locally optimum relaxation
parameters (Q). Note by inspection of file boxopt.f10 that it was found necessary to
reduce "how-much" to 0.6 from its default of 0.7 to correct afailure to converge. But
with that parameter set that way, it did converge faster than the basic case, as seenin
Figures9aand 9b. The S& S RHS terms for this case shown in Figure 9b convergein
about 350 iterations, as opposed to 425 iterations for the basic box case shown in
Figure2b. The point movement functions shown in Figure 9a converge in about 800
iterations for this case, as opposed to about 1,000 iterations for the basic box case shown
in Figure 2a.

97

Figure 9. Convergence Historiesfor Box Case With Optimum Omega.

=| PLOTIT = |0

BOX CASE. $&S RHS TYPE. OPTIMUM OMEGA. -- Block 1

- LEGEND -

———— MAXMOVE
------ AVEMOVE

i ITERATIONS

Figure9a. Point Movement Functions.

98

|0

=| pLoTIT

S&S RHS TYPE. OPTIMUM OMEGA. -- Block 1

BOX CASE.

- LEGEND -
PQRMAX
PQRCOR

T
111 et
.|

1000

600

400

800

ITERATIONS

Figure9b. Control Term Functions.

99

INPUT FILTERS

PREGRAPE/AL PROGRAM

PREGRAPE/AL is another program, supplied as a companion to
3DGRAPE/AL. Some users use the popular program GRIDGEN to do surface
modeling and surface gridding. PREGRAPE/AL reads output from GRIDGEN
(which could be input to GRIDGEN3D), and one other file, and outputs files
which serve asinput to SDGRAPE/AL. Thus 3DGRAPE/AL can take the place
of GRIDGEN3D. PREGRAPE/AL readsthe *.bnda and *.mlgafiles which are
output from GRIDGEN, and the *.ctrl file the user makes for this program. It
outputs filel0, filel2, filel6, and filel8 for input to SDGRAPE/AL.

Note: --> GRIDGEN, as used herein, refers to releases through no. 8 of that code. As
of this writing there was an error in the .bnda file produced by the new version 9 of that
code, which prevented both this code and GRIDGEN3D from running properly. When
that error is fixed, this code will be made to run with GRIDGEN version 9.

Files which comprise PREGRAPE/AL are listed below:

File Sub- File name: Purpose or contents:
number: | directory:
179 pre pregrapeal_p.f | Main program of the PREGRAPE/AL

program. It reads the *.bndaand *.mlgafiles
which are output from GRIDGEN, and the
*.ctrl file the user makes for this program. It
outputs filel0, filel2, filel6, and filel8 for
input to 3DGRAPE/AL.

180 pre arlndist_p.f Calculate the blending coefficients based on
arclength rather than the actual parametric
index of agiven face

100

181 pre binkfl7_p.f Copy non-blank characters from an input
182 binkfl8_p.f string to an output string. The length of the
183 bInkfI10_pf string is the number in the filename.

184 binkfl12_p.f

185 binkfl14 p.f

186 bInkfl15 p.f

187 binkfl40 p.f

188 bInkfl60_p.f

189 bInkfl76_p.f

190 bInkfl79_p.f

191 bInkfl80_p.f

192 pre dsout3 p.f Utilizesthe LARCS or TFI interpolation to
specify adelta S per point.

193 pre ext2out_p.f Convert the .job fileto a.out file.

194 pre getdfalt_p.f These subroutines are designed to extract the

195 gtdfalt2 p.f default file name from the user inputted

' control file name.

196 pre maxdim_p.f Determine the maximum value of the two
indicesin afacefor the respective directions.

197 pre newfile p.f Determine if the user wants to try entering
another file or just stop.

198 pre nofile p.f Tell the user if the file just opened exists.

199 pre ntrp_p.f Compute the angle to be specified on aface,
based on interpolation from the edges.

200 pre polchk_p.f Determine whether or not agiven faceisa
pole boundary.

201 pre split_p.f Uncompress the value n into two numbers
ndiv,nmod based on m.

202 pre tmflwcon_p.f | Determine if the face that has the boundary
condition (ibc) should have orthogonality
controlled or not.

203 pre makefile.pre Makefile to compile and link PREGRAPE/AL

204 pre exf.ctrl Control scalarsto run PREGRAPE/AL

205 pre exf.bnda Output file from GRIDGEN

206 pre exf.mlga Output file from GRIDGEN

Table 13. PREGRAPE/AL Program and Data Files (Files 179 - 206)

In order to use the BDGRAPE/AL code, just as the 3DGRAPE code, a definition of the
configuration's surface is needed. To make 3DGRAPE/AL acomplete system, avolume
grid block and 2D parametric block-face grid generator are required. To provide this

101

information, PREGRAPE/AL, an interface code, was created to link GRIDGEN2D to
3DGRAPE/AL.

The PREGRAPE/AL code uses its own input file and GRIDGEN3D input data to
generate the SDGRAPE/AL control decks. Other data required to run 3DGRAPE/AL are
provided by PREGRAPE/AL, including:

* UNIX shell scriptsfor 3DGRAPE/AL (and 3DV OLCHK, another program not
included in this package).

» Generation of 3DGRAPE/AL control decks (files 10, 11 and 16).

» Cédl heightsfor Steger and Sorenson forcing function controls using either 2DTFI
or LARCS (file 12).

» Specification of incidence angle at aboundary (file 12).
o Parameter file generation for dimensioning 3DGRAPE/AL (params.h).
* UNIX script to compile and link SDGRAPE/AL

The PREGRAPE/AL input file has the following form:

Wor ki ng directory of 3DGRAPE runs (a):/scr/salter/wood/scl/
UNI X Script for CRAY,IRI S ONYX,SUN (a):iris

FLAGS ctd, face, dsi, 3dj, 3dg (5i2): 00001
Configurati on nane (a):Straight Cone #1 for UPS Study
Def aul t basenane (a):scl
Bl ock Information file (*.bnda) (a):scl. bnda
Face Information file (*.m ga) (a):scl.mga
Interactive Visualization (a):elvl0-vol.view
#of Newstart iteration sequences (i2):01
Nurber of Lapl ace(0) Coarse/ Steger & Thomas & Rel axat i on
Iterations Poi sson(1) Fi ne Sor enson M ddl ecof f Rat e
800 1 0 1 0 0.5
#of Restart iteration sequences (i2):01
Nurber of Lapl ace(0) Coarse/ Steger & Thomas & Rel axat i on
Iterations Poi sson(1) Fi ne Sor enson M ddl ecof f Rat e
800 1 1 1 1 -7
Sorenson init (0); 3DTFl (1) (f12.6): 1.
Decay rates for each block/face (f12.6):-40.
Bl ock Face Decay Rate
Number Nunber Fact or
1 1 -1.00
1 2 0. 20
1 3 0.35
1 4 0.35
1 5 0. 30
1 6 0.35
O thogonality Control (i4): -6
Bl ock Face I nterp. Interp. Blending Nornalized 2DTFI I nci dence
Number Number indx1->3 indx2->4 Function Arc Lengths LARCS Angl e
1 1 2 2 3 1 2 1
1 2 2 3 1 2 1
1 3 1 1 1 1 2 0
1 4 1 1 1 1 1 1
1 5 1 1 3 1 2 1
1 6 2 2 3 1 2 1

Thefileisread with formatted Fortran statements for those lines containing the colons":"
and the rest of the information is read with free formats. Two header lines are used for

102

understanding the input file for the iteration control sequences, orthogonality decay rates
and the calculation type for determining cell size. These header lines are expected and
will be read as 80 column character strings. The description of each lineis tabulated
below:

Line | Format: Description:
no.:
1,2 @ Header for thefile.

3 (41x,a) [Directory to find all data, including the source code.

Note: If the directory hasa~ in front of it, the script written will be
for a C-Shell, as opposed to the default Bourne Shell.

4 (41x,@ | Type of machine BDGRAPE/AL will use.

5 (41x,5i2) | Control flags for the types of datato be produced:
Flag# Description:

Control deck generation.

File 11 construction for " read-in-fixed" data
Cell size and incidence angle calculations.
3DGRAPE/AL UNIX script generation.

3DGRAPE/AL parameter file dimensioned based on grid
computational limits.

ga b~ wWDN B

6 (41x,@) [First comment line in the BDGRAPE/AL control deck, typically
used to label the control file for clarity.

7 (41x,a) | Default basename of GRIDGEN and 3DGRAPE/AL files.

(o]

(41x,a | Truncated GRIDBLOCK ascii file name.

9 (41x,@) | GRIDGENZ2D block face grid definitions.

10 (41x,i2) | Number of iteration sequences to be run in the " newstart" control

deck.
10a-b @ Header for columns of following data.
10c-? *) Number of iterations, activation of orthogonality controls, coarse or

fine solution, activation of the Steger & Sorenson source terms,
activation Thomas and Middlecoff source terms and the relaxation
rate for a specific set of iterations in the newstart control decks.
The four middle colums require a (1-$>$Y ES/0-$>$NO), while the
last column is a positive or negative number for the relaxation rate
of grid point movement. A negative number isthat percentage of
the optimum value. A positive number is a constant to be used.

11 (41x,i2) | Number of iteration sequencesto be runin the ““restart”" control
deck.

1lab) Header for columns of following data.

103

11c-?

*)

Number of iterations, activation of orthogonality controls, coarse
or fine solution, activation of the Steger & Sorenson source terms,
activation Thomas and Middlecoff source terms andthe relaxation
rate for a specific set of iterations in the restart control decks. The
four middle colums require a (1-$>$Y ES/0-$>$NO), while the |ast
column is a positive or negative number for the relaxation rate of
grid point movement. A negative number isthat percentage of the
optimum value. A positive number is a constant to be used.

12

(41x,f12.6)

Volume grid initialization through Sorenson’'s method (#1), or
optimized 3DTFI (#2).

13

(41x,f12.6)

Decay rate specification for the forcing functions. A negative
number denotes the default. The default in the " newstart” deck is
“"keep-default”. The default in the "restart” deck is the conversion
from GRIDGEN to 3DGRAPE/AL using the absolute value of the
decay rate read as the value of the EXPO variable, illustrated | ater.
Otherwise a positive number is the number of block/face
combinations that will use lines 12a-?.

13a-b

(@

First line header for columns of following data.

13c-?

*)

Grid block number, face number and decay rate to be used to
exponentially decay the orthogonality controlsinto the volume. A
negative number for the decay rate denotes " keep-default"for the
specified block/face combination in the newstart and restart. A
positive value sets the ~"keep-default” in the newstart and the
specified value in the restart.

14

(41x,12.6)

Cell height control of each block/face combination and the angle of
incidence of the grid linesto the boundary. If the number is
negative, the TEAM nomenclature and options within GRIDGEN,
are used. In this case, only pole boundaries and matching faces
have no control. All other face types will have orthogonality. If this
number is positive, it represents the number of block/face
combinations with controls to be specified in the following format

14a

(@

First line header for columns of following data.

14b

(@

Second line header for columns of following data.

14c-?

*)

Block number, face number, type of interpolations for adjoining
opposing faces: Linear (1), Elliptic (2), Hyperbolic blending of
both opposing pairs, use of normalized arc lengths for
interpolations, use of LARCS or 2DTFI for iterpolations and the
incidence angles to be used for each block/face combination.

Table 14. Description of PREGRAPE/AL input file

There are two basic methods for the computations of cell size and incidence angle used
for each face with orthogonality activated. The first is 2DTFI, which only uses the 6th
field in this portion of the input deck. The 6th field determinesif the 2DTFI is done based
on computational coordinates or the physical coordinates. To use the computational
coordinates, place a0 in the 6th field, other wise set it to 1 to use normalized arc-lengths
based on the physical coordinates.

104

The second method of interpolation isto use LARCS or Local ARc-length Cell Sizing.
Briefly, the LARCS method take blendings of the two opposing paired faces that connect
to the specified face and combine the effects of each into a single blended surface
representing avalue. In the case of the cell sizes, the blended surface represents the cell
sizes at each point on the surface, in computational or physical space. For example, if the
cell sizes of face 5 are to be computed using the LARCS method, the two opposing paired
faces that connect to face 5 arefaces 1 & 2 and faces 3 & 4, respectively. First, each cell
size distribution, dependent on the mating or connecting line to the specified face, are
blended using bi-linear or elliptic interpolation, for each opposing paired faces. Then a
hyperbolic blending function is used to blend the two interpolated surfacesinto asingle
blended surface. Though the method may seem extensive, it produces much smoother
distributions of cell sizes or incidence angles than 2DTFI.

The LARCS method requires the information in fields 3 through 6. Field 3 determines
the type of interpolation between the first set of opposing faces (bi-linear(1) or
eliptic(2)). Field 4 determines the type of interpolation between the second set of
opposing faces. Field 5 determines which interpolated or blended surface of LARCS to
use for specifying the cell sizes and incidence angles. The options are:

Q) Use the interpolated surface from the first opposing pair of faces.
(2 Use the interpolated surface from the second opposing pair of faces.
3 Use the hyperbolically blended surface of both paired opposing faces.

For the opposing pairs of each face, the following table can be used:

 Face: Pair #1 Pair #2
1 5&6 3&4
2 5&6 3&4
3 5&6 1& 2
4 5&6 1&2
5 1& 2 3& 4
6 1& 2 3&4

Table 15. Opposing Face Pairs

Finally, the incidence angle specification provides an alternative to orthogonality.
Utilizing the incidence angle specification, forces PREGRAPE/AL to compute the angle
of incidence of each grid line emanating from a specified boundary, by interpolating the
angles from the edges of that specified boundary.

NOTE: The computed cell heights/sizes and the boundaries with interpolated angles of
incidence will have a different file name, but all required data will appear infile 12. The
individual file names will have the following convention:

dsiblkBBfF.tcp -> Cell Sizesin TECPLOT data format
ntrpblkBBfF.tcp -> Incidence anglesin TECPLOT data format
where BB represents the block number, and F represents the face number.

For the PREGRAPE/AL input, the user must specify a negative EXPO value to use the
GRIDGEN3D to 3DGRAPE/AL conversion. For GRIDGENS3D, the default EXPO is 6.

105

Although the file seems involved and an added step, the PREGRAPE/AL code provides a
lot of flexibility in the grid-generation process. The transition between GRIDGEN and
3DGRAPE/AL is smooth and efficient. This transition also enables the user to generate
large grids easily and efficiently.

The method of volume grid generation typically used in conjunction with the
3DGRAPE/AL codeisthe following:

» Construct or obtain the surface of a configuration.
» Load the surface geometry definition into GRIDBLOCK of the GRIDGEN code.

» Construct the grid-blocking structure to be used, as well as setting CFD boundary
conditions and face-matching definitions.

* Load the GRIDBLOCK output into GRIDGEN2D and create al defining faces of
the grid-block structure. Note, there are six faces for each block.

» Output the face grid distributions (also referred to face definitions) and the bound-
ary conditionsto load into the GRIDGEN3D code.

* Setuptheinput file for PREGRAPE/AL and run it with theinput [file].bnda and
[file].mlgafiles usually read by GRIDGENSD.

» Compile, link and execute the SDGRAPE/AL code for the geometry to conver-
gence or until the grid structure meets the needs of the user.

» Execute the volume checking portion of the 3DGRAPE/AL code to evaluate grid
quality, and to determine if further iterations with the 3SDGRAPE/AL codeis
necessary.

The user may have to repeat the last 6 steps of the above method to obtain good
grid distributions, or better parametric dimensional limits.

Warning --> When PREGRAPE/AL runs it produces a new params.h file. Thus, if it is
run in the same directory as are stored the source files for the 3DGRAPE/AL code, it will
wipe out the original params.h file copied from the distribution tape. Users should not
run PREGRAPE/AL in the same directory as the 3DGRAPE/AL source files unless they
are sure that they wish to employ this feature.

F10FILTER PROGRAM

The F10FILTER program is another program supplied with 3DGRAPE/AL which
converts filel0 input files as used in the earlier 3DGRAPE program into filel0 input files
which can be read by the new 3DGRAPE/AL program. It isasimple, straightforward
Fortran program. The user should compile and link it in the obvious way, as with any
other simple Fortran program, as:

f77 -o f10filter f10filter.f

To useit simply type the program name, followed by two file names -- the name of the
old existing filel0 datafile, and the name of the new filel0 data file to be created.
Example:

f10filter ol d.f10 new. f10

There are comments at the top of the Fortran source program. It isrecommended that the
user read them.

106

Listed below are the two filesin this subdirectory.

File Sub- File name: Purpose or contents:
number: | directory:
207 f10filter | f1Ofilter.f The Fortran source of the FIOFILTER
program.
208 f10filter |ex1.f10 A sample data case,which can be read by the

old 3DGRAPE program.

Table 16. F1I0FILTER Program and Data Files (Files 207 - 208)

THEORETICAL DEVELOPMENT

POISSON EQUATIONSIN PHYSICAL SPACE

The original 3DGRAPE program and the new 3DGRAPE/AL program both generate
grids by iteratively solving the Poisson Equations in three-dimensions. A mapping is
thus found between the computational coordinates &,n,{ and the physical coordinates
X,Y,Z. The equations are typically given in the computational space as

Exx + Eyy + Ezz - P(E’H’Z) (1a)
Nxx + Nyy T Nz = Q(&,n., () (1b)
Zxx + Zyy + Z?zz = R(E,H,Z) (1c)

However, it is natural to apply them in the physical space. It isnatural to specify the grid
boundary conditions by giving X,Y,Z at fixed values of ¢,n,(rather than to give values of
&,n.¢ at fixed values of X,Y,Z. The transformation of Egs. 1 to physical space proceeds

asfollows. Clearly, we must have

& =¢&(xy,2) (23

n =n(xy.z) (20)

¢ ={(xy,2) (20
To effect this transformation we must also have

x =x(&,n.,0) (33

y =y(&,n,¢) (30)

107

z=12(&,n,{) (30)

Differentiating Egs. 2 and applying the chain rule gives

A8 |&x & &y,
dn|=1|ny Ny Nz dy (4)
d
2| |28y T
Likewise, differentiating Eqgs. 3 and applying the chain rule gives
Xz Xp X
g | % d¢
dy|=|¥e ¥n ¥z ||dn 5)
dz Ze 2y Z7||dC

We designate the 3 x 3 matrix in Eq. 5 as M, assume that its inverse exists, and pre-
multiply both sides of Eq. 5 by M-1. Thisgives

d
dx :
M~idy|=|dn (6)
dz
dd
Substituting from Eqg. 6 into EQ. 4 gives
M=dy| = [Nx Ny N||dy Y
dz dz
(x Cy G2
We know that, in generdl, if
AV = Bv (89)
and if B-1 exists then
BlAV=V (8b)
Therefore it must be true that
B1A=| (80)

Pre-multiplying by B gives

108

A=B (8d)
Applying Egs. 8to Eq. 7 gives

Ex Gy &2
M2 =In,ny N ©
(x Gy ¢
For this to be useful, we must find M-1. It isknown, in general, that
4 _ Adi(A)
Al=00
Det(A) a0

Where Adj(A) isthe adjoint of A and Det(A) isthe determinant of A. The adjoint of A is
amatrix having as each element the corresponding cofactor of A. Thus, from Eq. 9, we

have

& &y & Y11Y12Y13
Nx Ny Nz| = Y21Y22Y23llJ (11)
L4 & Y31Y32Y33

whereyj I!1 istheij-th cofactor of M and Jisthe determinant of M. By inspection of Eq. 11

we see that
&x = Yi/J (123)
&y = YiolJ (12b)
&z = Y13/J (120)
Nx = Yz21/J (12d)
Ny = Yao!J (12¢)
Nz = Yz3/J (12f)
(x = Ya1/J (129)
Cy = Y3!J (12h)
;= Ys3lJ (12i)

109

Completion of the derivation of the transformed Poisson equations requires further
differentiating the metricsin Egs. 12, substituting them into Egs. 1, and collecting terms.
This processis simple calculus, but very lengthy and beyond the scope of thisTM. The
resultis

Ol1args + Opofnn + 33l
+ 2 (Ogofen + Ogaleg + Oozng) (133)
=-F (Prz + Qry + RrY)

where:

=5y (13b)
Z
and
3
ajj :mzz YmiYm (13¢)

IMPROVED STEGER & SORENSON RHSTERMS

The distribution of pointsin the grid results primarily from the influence of the Right-
Hand Side (RHS) terms, or forcing functions. We are free to choose them as we please.
In both new and old programs they are:

P(&,n.¢) = Pi(n,{)e® + Py(n, {)eimact)
+ PS(E!Z)e_an + P4(E,Z)e'a(nmax‘r]) (149)
+ P5(&,n)e® + Py(&,N)eaAlmax-0)

Q(E,W,Z) - Ql(r]’Z)e-aE + QZ(”!Z)e-a(EmaX_E)
+ Qs(&, Q)e + Qu(&, {)edNmac) (141)
+ (25(Ein)e-aZ + QG(E,n)e'a(Zmax'Z)

R(E!”i() - Rl(r],Z)e'aE + Rz(r],Z)e'a(EmaX‘E)
+ R3(§,0)ed + Ry(&, ()ednmacn) (140

+ RS(E’n)eaZ + R6(E,r])ea(Zmax'Z)

110

Clearly, these RHS terms P,Q,R are simply superpositions of other terms Pp,Qn,Rn for
1<n<6, multiplied by exponentials which are at their maximum value, one, at the
boundary surfaces and which decay with distance into the interior of the block. The
positive constant "a" in Eqs. 14 is set by the user, and determines the rate of exponential
decay in the size and influence of the RHS terms.

A nomenclature for the face numbers has been introduced. Itisseenin Table 7. By
examining that nomenclature we see that at each of the boundaries the termsin P,Q,R
having their subscripts equal to the face number are non-zero, and the other termsin
P,Q,R approach zero due to the behavior of their exponential factors. At face 3, for

example, Egs. 14 reduce to:
P(E’r]’Z) = P3(E1Z) (153)

Q(&,n,¢) = Qs(¢,¢) (15b)
R(&:N,¢) = Rs(&,{) (150)

So then we can find the terms Pp,Qn,Rn at face n by considering each facein turn. At
each point on each face we:

* Assume that the Poisson Equations, Egs. 13, are satisfied.
* Findvauesfor al first and second partia derivatives required by Egs. 13.

* Egs. 13reduceto a3 x 3 set of linear equations in the three unknowns Pn,Qn,Rn.
Solve them.

Having found all the Pn,Qn,Rn, for 1<n<6, we can calculate P,Q,R at al pointsin the grid
from Egs. 14.

However, finding values for all first and second partial derivatives at each face is not
trivial. To further illustrate this we must restrict our attention to a particular face. We
choose face 3 to illustrate. On face 3 the derivativesrg, I7, g7, Iz , and rz; can be found
by differencing known boundary face points. The derivativesry, arefound by differenc-
ing the grid solution at the current time step, as described on page 78 of Ref. 2. If we
could find derivatives f,, we could then difference them to find derivativesrg, and .

We find derivatives f,, by adding additional equations which embody the user's

regquirements on cell height and skewness. In the old 3DGRAPE method we added the
three equations

rg. M =0 (162)
fh.7z=0 (16b)

AsseeninTable 7, and (vary over face 3, andn varies along lines intersecting the
face. Thus Egs. 16aand 16b require orthogonality between the lines intersecting the face
and the coordinate lines running over the face. Eq. 16c¢ requires that the cell height on the
surface be the positive constant S.

111

It isat this point that the old 3DGRAPE method and the new 3DGRAPE/AL method
differ. Inthe new method we realize that when making grids about real-world
configurations, with singularities and slope discontinuities, it is sometimes necessary to
have grid cells which are skewed in a specified way. Lacking this ability, an inconsis-
tency can develop which can either cause the elliptic solver to not converge, or result in
an unsuitable grid. And so Egs. 16 are replaced by

Fe. Ty =g [rn| costs (174)
Iy . Tz =y - [rg| cos2 (17b)
.= (170)

where 01 is the angle between the coordinate line intersecting face 3 and the line of
varying & on face 3, and 82 is the angle between the coordinate line intersecting face 3

and the line of varying on face 3. For 61 and 62 equal to 90°, Egs. 17 reduce to
Egs.16.

We now proceed to solve Egs. 17 for T,,. Expanding, we have

X2+y2+22=8 (180)

where
C1 = |Ig| S cosh;
C, = [fz| S cosb,

C1 and c2 are constants because 81, 62, S, and the points on face 3 are user-defined
inputs. Equations 18 are three equations in the three unknowns x,yn,zn Which are the
elements of T,,. But because Eq. 18c is quadratic, solving this set of equationsis not
straightforward. We will make an assumption about one of the unknowns and solve,
make that assumption about another of the unknowns and solve, and then make that
assumption about the last of the unknowns and solve. We will then select the answer
which is"best."

The first assumption we make isthat Xy isaconstant. Termsinvolving xp in Egs.18a
and 18b are brought to the right side of the equations, and then the equations are solved,
yielding

Yn = XYz / Y2 + Kyq (199)

Zn = XnYa2 / Y2 + Ko (19b)
where

112

B C1Z7 - CoZ;

1=
Y12
CoYe - CiYe
k2 =
Y12
K1 and k2 are constants. Then from Eq. 18c
y -b + Vb?* - 4ac
— (20)
f 2a

where

a=1+ (Yaolyi2P + (YaolY12f?
b= 2 (ki + K
E(1Y12 + KoYap)

c=ki+ks-S?

The second assumption isthat yr isaconstant. Termsinvolving yn in Egs. 18aand 18b
are brought to the right side of the equations, and then the equations are solved, yielding

Xn = YnYiz/ Ya2 + Kq (21a)
Zy = YnYa2 ! Y2 + Ko (21b)
where
B C1Z7 - CoZ;
1=
Y22
CoXg - C1X¢
k2 =
Y22
Then from Eqg. 18c
_ -b++vb?-4dac
Yn = 5a (22)

where

a=1+ (Yiofyaol + (Yaol Y22
b= 2 (kiyp + k
E(Y12 + Koyao)
and c isthe same as above, in Eq. 20.

113

The third assumption is that zyy isa constant. Termsinvolving zp in Egs. 18aand18b are
brought to the right side of the equations, and then the equations are solved, yielding

Xn = ZnYi2/ Yoo + Kyq (239)
Yn=ZyY2 ! Ya2 + Ko (23b)
where
C1Yz - CoYs
kl =
“Y32
CoXg - C1X¢
k2 —
-Y32
Then from Eq. 17c
. -b £ vb? - 4ac
= 24
N 24 (24

where

a= 1+ (YiofYa2) + (Yool Yoo

b= L(Kiyiz + Koyao)
Y32

and c isthe same as above, in Eq. 20.
In general, none of these three assumptionsis strictly correct. However, it usually turns
out that at least one of them is close enough to correct for this method to generate suitable
grids. It was said that we would choose whichever of these three solutions was "best.”
However, Egs. 20, 22, and 24 each include an ambiguous sign from a square-root
operation. Therefore, we actually have six solutions to choose from. Using each of the
six solutions we compute the Jacobian. If the coordinates in the block are right-handed
(with the "handedness' being a user-defined input) we choose the solution which yields
the largest positive Jacobian. If the coordinates in the block are left-handed we choose
the solution which yields the largest negative Jacobian. The logic behind choosing based
upon the Jacobian is that Jacobians, as defined above, having large absolute values seem
to be present in grids which are more orthogonal, and, conversely, Jacobians having small
absolute values seem to be present in grids which are highly skewed. Thus the elements
of 'n are found.
The foregoing is the analysis for face 3. The analysis for face 4 appears nearly identical,

differing only in some of the difference formulas. The analysesfor faces 1, 2, 5, and 6
follow in a straightforward manner from the foregoing example.

Thisformulation for the S& S RHS terms requires a lot of computation but most of it is
done only once, at the start of the iteration schedule. It was said, above, that having all
values for the derivatives at the face those derivatives are substituted into Egs.13,

114

yielding a 3 x 3 set of linear equations in the three unknowns Pp,Qn,Rn. Their solution

shows Pn,Qn,Rn to be linear functions of the second derivativesr,, which are found by

differencing at each time step. The coefficientsin those linear functions are fixed for all
computational time. Therefore, the only computation necessary to find the RHS termsin

each iteration isto re-evaluate ry, , re-compute the linear functions using the fixed coef-

ficients to get Pn,Qn,Rn at each face, and then use Egs. 14 to re-compute the P,Q,R at
every point in the grid.

The effectiveness of this method is seen in Figure 4. When wrapping agrid around a
sharp edge it is necessary to cause the lines intersecting the surface near the edge to bend
toward the edge for best results. The ultimate example of wrapping agrid around a sharp
edgeistowrap it around the edge of aflat plate. Figure 4 showsawing with a zero-
thickness extension in the spanwise direction, and a C-H type grid around it. Thus, itis
necessary to wrap a C-type grid around the leading-edge of that wing and its flat-plate
extension. Thiswould not have been possible with the old type RHS terms.

THOMAS & MIDDLECOFF CLUSTERING TERMS

When making grids in regions where all six faces of the computational cube arefixed it is
sometimes advantageous to use clustering functions where the spacing normal to afaceis
determined by the spacing on the side walls. The Thomas and Middlecoff clustering
terms, described in Ref. 6, are included here for that purpose. However, the Thomas and
Middlecoff clustering terms

P=®(§ .§) (25a)
Q=%(M .0) (250)
R=Q(q .[q) (250)

where
_ rg . rEE
s . I (250)
— Fr] . Frm
V=33
n-™n (25€)
_ rz . rZZ
rz . Iz (250)

are given in the computational space, and to be useful here they must be converted to
physical space. Applying the definition of the [J operator, illustrated by

q =&j+&k+&] @8)

115

Wherej, k, and | are the unit normal vectors, and reducing, gives

P=d(E+ &+ &2) @73
Q=y((nz+nZ+n? (27b)
R=Q(+ 5+) 219

Substituting the metrics shown in Egs. 12 into Egs. 27, and expanding and re-grouping,
gives

P= CD[(FW . _)n) (_r)z . Fz) - (Fn . ?Z)}/JZ (28a)
Q= Tz . Te)(Tg . Tg)- (e . F)JF (280)
R= Q[(F{ . ?E) (Fn . ?n) - (FE . ?nﬂ/\)z (28c)

These RHS terms generate good grids in many applications. An exception is the situation
where the opposing side boundaries, from which the T& M terms are cal culated, have
very different clustering characteristics. In these cases instabilities in the Poisson solver
can result.

It was found in the development of SDMAGGS (Ref. 4) that S& S clustering terms tend to
give the most-nearly-orthogonal grids near boundaries, while T& M clustering terms give
the best clustering in the interior of the blocks. And so a blending between the two kinds
of RHS terms was developed, and isincluded in SDGRAPE/AL.

OPTIMUM RELAXATION PARAMETER

3DGRAPE/AL solves the 3-D Poisson equations using Point Successive Over Relaxation
(PSOR). In PSOR thereis arelaxation parameter, Q, which determines the rate of
convergence and stability of the method. In the old program the Q was fixed for all
computational time. That option is still available in the new code aswell. However, the
new code also has an algorithm to compute an optimum relaxation parameter at every
point in the grid using the method of Erlich, as described in Ref. 8.

That method requires the equations being solved, here Eq. 133, to be represented as a
difference equation of the following form:

afj k) + aufjerk) + ofjk+1) + Bafjx+1 09

+ agfjak) + 3sfjk1 T Beljki-1 = Dk

Applying standard central differencesto all first and second partia derivativesin Eq. 13a,
and collecting terms, we arrive at the form of Eq. 29, where

8y = -2 (0(11 + U2 Os3 (309

AEf - (anf - (azf

116

g = Ou 4 FP

(AE)2 Y (300)
& = U2z FQ (30c)
(anf - 24n
_ 0z . FR
& (AZ)2 + o7 (300)
_ Oy _ FP .
(AE)2 Y (30¢)
— U2 _ FQ (300
(anf 24N
3 = (Z;ﬁz - iFé (300

The complex eigenvalues of Eq. 29 at each point, ignoring wave numbers above 1, are

= .= & Tt TT
W= e+ ao(mcosm + vegagcosy T

+ mg%cosiﬂ)

Imax

(31)

where py and pj are the real and imaginary parts of [, respectively. Itisrequired that
|y CIL.

Continuing with Erlich's method, as formulated by Steinbrenner, Chawner, and Fouts on
pages 6-6 and 6-7 of Ref. 9 (with typographical errors corrected), we let

A=z + pf (329
B=pf-pf (320)
C=A2-B2 (320)
D=A%-B (32d)
E=+C+ D? (32¢)
F=%C (32f)

117

Then

~_ (3D +E)F VE-D - (3D - E) F VE+D + A?+3B2- 4A%B
A?D

(33)

and the relaxation parameter wis
- |[{®-V& + 4w)2 if DO|
" o+ Vo + 400)2 if DO >

This method can reduce the number of iterations required to achieve convergence. The w
so computed can sometimes be alittle too large, and so cause instabilities. Therefore, in
the code, they are multiplied by alimiting factor. The default value of thisfactor is0.7,

but avalue of 0.6 was found to be necessary in one of the sample cases. These w are
dependent on the grid at its current time step, and so they are typically re-calculated each
time step. Ascan be inferred from the above, computing them requires a significant
amount of computer time, so the code has an option wherein they are re-calculated every
n time steps.

POSTSCRIPT FILES

The last group of files on the tape are compressed PostScript files comprising this
manual. It should be possible to "uncompress' them and print them on any PostScript-
compatible printer. After inserting the figure pages in the appropriate places, it should
then be possible to duplicate this manual.

File Sub- Filename: Purpose or contents:
number: | directory:
209 ps manual.text.ps.Z | Thetext of this manual, in compressed
PostScript form
210 ps fig.1.ps.Z Figure 1 in compressed PostScript form
211 ps fig.2aps.Z Figure 2ain compressed PostScript form
212 ps fig.2b.ps.Z Figure 2b in compressed PostScript form
213 ps fig.3aps.Zz Figure 3ain compressed PostScript form
214 ps fig.3b.ps.Z Figure 3b in compressed PostScript form
215 ps fig.4aps.Z Figure 4ain compressed PostScript form
216 ps fig.4b.ps.Z Figure 4b in compressed PostScript form
217 ps fig.4c.ps.Z Figure 4c in compressed PostScript form
218 ps fig.5aps.Z Figure 5ain compressed PostScript form
219 ps fig.Bb.ps.Z Figure 5b in compressed PostScript form
220 ps fig.6aps.Z Figure 6ain compressed PostScript form

118

221 ps fig.6b.ps.Z Figure 6b in compressed PostScript form
222 ps fig.7aps.Z Figure 7ain compressed PostScript form
223 ps fig.7b.ps.Z Figure 7b in compressed PostScript form
224 ps fig.7c.ps.Z Figure 7c in compressed PostScript form
225 ps fig.7d.ps.Z Figure 7d in compressed PostScript form
226 ps fig.7e.ps.Z Figure 7e in compressed PostScript form
227 ps fig.8aps.z Figure 8ain compressed PostScript form
228 ps fig.8b.ps.Z Figure 8b in compressed PostScript form
229 ps fig.9aps.zZ Figure 9ain compressed PostScript form
230 ps fig.9b.ps.Z Figure 9b in compressed PostScript form

Table 17. PostScript Files Comprising ThisManual (Files 209 - 230)

THE END

119

